將 wordcount2 改成 0.20 版
前言
按照hadoop 0.20 官方網頁的 wordcount v2 .
WordCount
最需要給的地方是 " extends MapReduceBase? implements Mapper" 原因是在hadoop 0.20時,mapreducebase 此class已經被deprecated,
因此應改寫如 " extends Mapper"
然而最主要不能改變的原因是,程式中很重要的功能 DistributedCache 以及 -Dwordcount.skip.patterns 等功能寫於 configure() 函數內。 此configure() 繼承自 MapReduceBase?,
因此若整個程式改成hadoop 0.20 的 " extends Mapper" ,則有些功能將不知是否能使用
原始程式碼
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.ArrayList; import java.util.HashSet; import java.util.Iterator; import java.util.List; import java.util.Set; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat; import org.apache.hadoop.util.StringUtils; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class WordCountV2 extends Configured implements Tool { public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { static enum Counters { INPUT_WORDS } private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private boolean caseSensitive = true; private Set<String> patternsToSkip = new HashSet<String>(); private long numRecords = 0; private String inputFile; public void configure(JobConf job) { caseSensitive = job.getBoolean("wordcount.case.sensitive", true); inputFile = job.get("map.input.file"); if (job.getBoolean("wordcount.skip.patterns", false)) { Path[] patternsFiles = new Path[0]; try { patternsFiles = DistributedCache.getLocalCacheFiles(job); } catch (IOException ioe) { System.err .println("Caught exception while getting cached files: " + StringUtils.stringifyException(ioe)); } for (Path patternsFile : patternsFiles) { parseSkipFile(patternsFile); } } } private void parseSkipFile(Path patternsFile) { try { BufferedReader fis = new BufferedReader(new FileReader( patternsFile.toString())); String pattern = null; while ((pattern = fis.readLine()) != null) { patternsToSkip.add(pattern); } } catch (IOException ioe) { System.err .println("Caught exception while parsing the cached file '" + patternsFile + "' : " + StringUtils.stringifyException(ioe)); } } public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = (caseSensitive) ? value.toString() : value.toString() .toLowerCase(); for (String pattern : patternsToSkip) { line = line.replaceAll(pattern, ""); } StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); reporter.incrCounter(Counters.INPUT_WORDS, 1); } if ((++numRecords % 100) == 0) { reporter.setStatus("Finished processing " + numRecords + " records " + "from the input file: " + inputFile); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public int run(String[] args) throws Exception { JobConf conf = new JobConf(getConf(), WordCount.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); List<String> other_args = new ArrayList<String>(); for (int i = 0; i < args.length; ++i) { if ("-skip".equals(args[i])) { DistributedCache .addCacheFile(new Path(args[++i]).toUri(), conf); conf.setBoolean("wordcount.skip.patterns", true); } else { other_args.add(args[i]); } } FileInputFormat.setInputPaths(conf, new Path(other_args.get(0))); FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1))); CheckAndDelete.checkAndDelete(other_args.get(1), conf); JobClient.runJob(conf); return 0; } public static void main(String[] args) throws Exception { String[] argv = { "-Dwordcount.case.sensitive=false", "/user/waue/input", "/user/waue/output-wc2", "-skip", "/user/waue/patterns/patterns.txt" }; args = argv; int res = ToolRunner.run(new Configuration(), new WordCountV2(), args); System.exit(res); } }
修改
此程式碼用hadoop 0.20的api 將 deprecated 修正,然而卻出現以下錯誤
Exception in thread "main" java.lang.NullPointerException at WordCountV020.run(WordCountV020.java:127) at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:65) at WordCountV020.main(WordCountV020.java:147)
由於 patternsFiles = DistributedCache?.getLocalCacheFiles(conf); 沒有取到任何資料,因此出錯
修改後原始碼
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.ArrayList; import java.util.HashSet; import java.util.Iterator; import java.util.List; import java.util.Set; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.StringUtils; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class WordCountV020 extends Configured implements Tool { static boolean caseSensitive = true; static Set<String> patternsToSkip = new HashSet<String>(); static void parseSkipFile(Path patternsFile) { try { BufferedReader fis = new BufferedReader(new FileReader(patternsFile .toString())); String pattern = null; while ((pattern = fis.readLine()) != null) { patternsToSkip.add(pattern); } } catch (IOException ioe) { System.err .println("Caught exception while parsing the cached file '" + patternsFile + "' : " + StringUtils.stringifyException(ioe)); } } public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { static enum Counters { INPUT_WORDS } private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = (caseSensitive) ? value.toString() : value.toString() .toLowerCase(); for (String pattern : patternsToSkip) { line = line.replaceAll(pattern, ""); } StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); context.write(word, one); } } } public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } context.write(key, new IntWritable(sum)); } } public int run(String[] args) throws Exception { Configuration conf = new Configuration(); // 宣告job 取得conf 並設定名稱 Hadoop Hello World Job job = new Job(conf, "Hadoop Hello World"); // 設定此運算的主程式 job.setJarByClass(HelloHadoop.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setMapperClass(Map.class); job.setCombinerClass(Reduce.class); job.setReducerClass(Reduce.class); List<String> other_args = new ArrayList<String>(); for (int i = 0; i < args.length; ++i) { if ("-skip".equals(args[i])) { DistributedCache .addCacheFile(new Path(args[++i]).toUri(), conf); conf.setBoolean("wordcount.skip.patterns", true); } else { other_args.add(args[i]); } } caseSensitive = conf.getBoolean("wordcount.case.sensitive", true); if (conf.getBoolean("wordcount.skip.patterns", false)) { Path[] patternsFiles = new Path[0]; try { patternsFiles = DistributedCache.getLocalCacheFiles(conf); } catch (IOException ioe) { System.err .println("Caught exception while getting cached files: " + StringUtils.stringifyException(ioe)); } for (Path patternsFile : patternsFiles) { parseSkipFile(patternsFile); } } FileInputFormat.setInputPaths(job, new Path(other_args.get(0))); // 設定輸出路徑 FileOutputFormat.setOutputPath(job, new Path(other_args.get(1))); CheckAndDelete.checkAndDelete(other_args.get(1), conf); job.waitForCompletion(true); return 0; } public static void main(String[] args) throws Exception { String[] argv = { "-Dwordcount.case.sensitive=false", "/user/waue/input", "/user/waue/output-v020", "-skip", "/user/waue/patterns/patterns.txt" }; args = argv; int res = ToolRunner .run(new Configuration(), new WordCountV020(), args); System.exit(res); } }
Last modified 15 years ago
Last modified on Jan 19, 2010, 5:21:44 PM