hadoop programming 完全公式
輸入 key 輸入 value 輸出 Key 輸出 Value Mapper < A , B , C , D > map ( A , B , OutputCollector < C , D > , Reporter reporter ) output . collect ( c , d ) Reducer < C , D , E , F > reduce ( C , Iterator<D> , OutputCollector < E , F > , Reporter reporter ) output . collect ( e , f )
- A, B, C, D ,E, F 分別代表可以用的類別;c, d, e, f 代表由C,D,E,F所產生的物件
- 有了這張表,我們規劃要寫M/R程式的時候:
- 先把Map的輸入<key,value> 應該屬於哪種類別的,則A,B定好
- Map的輸出<key,value>定好,則 C,D也ok了
- 接下來想最終輸出的<key,value>該為何類別,則 E,F 決定好
- 分別填入 ABCDEF之後,整個程式的架構就出來了,接下來就看你的程式如何實做
- 舉例<WordCount> :
- 由於輸入為hdfs的路徑,因此傳到mapper裡時,key= 檔案內每一行的位址、value代表檔案內的每一行字串,因此A可以任意類別,B則為Text
- 而wordcount最終要算出的是每個字的出現次數,因此輸出的<key,value>應該是文字,數字,故 E=Text, F=IntWritable
- 如何才能原本一開始每一行字,進而分析成<文字,數字>,故邏輯為先把每一行的單字都取出,然後設定map的輸出為<單字,1>,以便放到Reduce去相加,所以C=Text, D=IntWritable
- 把ABCDEF填入之後,剩下只是程式邏輯而已!
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } }
Last modified 15 years ago
Last modified on Jul 15, 2009, 5:51:57 PM