HBase 進階課程
程式範例練習
範例六:WordCountHBase
說明:
- 此程式碼將輸入路徑的檔案內的字串取出做字數統計,再將結果塞回HTable內
- 請注意在將hbase 等函式庫放入hadoop 的lib 目錄後,必須重新啟動hbase 與 hadoop 再執行此範例程式才不會出現錯誤
$ bin/hadoop dfs -mkdir input $ bin/hadoop dfs -put README.txt input $ bin/hadoop jar TCRCExample.jar CountToHBaseReducer input
注意:
- 在hdfs 上來源檔案的路徑為 "/user/$YOUR_NAME/input"
請注意必須先放資料到此hdfs上的資料夾內,且此資料夾內只能放檔案,不可再放資料夾
- 運算完後,程式將執行結果放在hbase的wordcount資料表內
程式碼
package org.nchc.hbase; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.mapreduce.TableOutputFormat; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; public class CountToHBaseReducer { public static class HtMap extends Mapper<LongWritable, Text, Text, IntWritable> { private IntWritable one = new IntWritable(1); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 輸入的字串先轉換成小寫再用空白區隔 String s[] = value.toString().toLowerCase().trim().split(" "); for (String m : s) { // 寫入到輸出串流 context.write(new Text(m), one); } } } public static class HtReduce extends TableReducer<Text, IntWritable, LongWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable i : values) { sum += i.get(); } Put put = new Put(Bytes.toBytes(key.toString())); put.add(Bytes.toBytes("content"), Bytes.toBytes("count"), Bytes .toBytes(String.valueOf(sum))); context.write(new LongWritable(), put); } } public static void main(String args[]) throws Exception { // eclipse // String[] argv = { "/user/hadoop/input" }; // args = argv; String tablename = "wordcount"; String family = "content"; Configuration conf = new Configuration(); conf.set(TableOutputFormat.OUTPUT_TABLE, tablename); // 建立hbase 的table 否則沒先建立會出錯 CreateTable.createHBaseTable(tablename, family); Job job = new Job(conf, "WordCount table with " + args[0]); job.setJarByClass(CountToHBaseReducer.class); job.setMapperClass(HtMap.class); job.setReducerClass(HtReduce.class); // 此範例的輸出為 <Text,IntWritable> 因此其實可以省略宣告 // set{Map|Reduce}Output{Key|Value}Class() job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // InputFormat 只有一個子介面 // FileInputFormat <-(SequenceFileInputFormat,TextInputFormat) // 其中TextInputFormat 最常用 ,預設輸入為 LongWritable,Text // 另外HBase 則設計了一個子類別 TableInputFormat job.setInputFormatClass(TextInputFormat.class); // TAbleOutputFormat // 宣告此行則可使 reduce 輸出為 HBase 的table job.setOutputFormatClass(TableOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
執行測試
$ /opt/hbase/bin/hbase shell hbase(main):x:0> list wordcount 1 row(s) in 0.0240 seconds hbase(main):x:0> scan 'wordcount' ..... zeller column=content:count, timestamp=1285674576293, value=1 zero column=content:count, timestamp=1285674576293, value=8 zero, column=content:count, timestamp=1285674576293, value=2 zero-compressed column=content:count, timestamp=1285674576293, value=1 ..... hbase(main):x:0> exit
Last modified 14 years ago
Last modified on Apr 24, 2011, 6:28:56 PM