Hadoop 進階課程
範例練習
說明
WordCountV20 說明: 用於字數統計,並且增加略過大小寫辨識、符號篩除等功能 [已全改為 hadoop 0.20 API ] 測試方法: 將此程式運作在hadoop 0.20 平台上,執行: --------------------------- hadoop jar WordCountV2.jar "/home/nchc/input" "/home/nchc/output-wc2" "-c" "-skip" "/home/nchc/patterns/patterns.txt" --------------------------- 注意: 1. 以在程式內設定<input> <output> 路徑為local 的 "/home/nchc/input" "/home/nchc/output-wc2" 2. 若要測試 skip功能,請建立一個"/home/nchc/patterns/patterns.txt" 檔,內容如下(一行一個,前置提示符號\) \. \, \! 3. 若要測試過濾大小寫功能,請加入 -c 參數(有-c 代表 "不考慮大小寫" ) 4. 注意 DistributedCache , setup() , conf 參數傳遞於 main, mapper, setup 中
WordCountV2.java
package org.nchc.hadoop; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.StringUtils; public class WordCountV20 { public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { static enum Counters { INPUT_WORDS } private final static IntWritable one = new IntWritable(1); private Text word = new Text(); private boolean caseSensitive = true; private Set<String> patternsToSkip = new HashSet<String>(); private void parseSkipFile(Path patternsFile) { try { BufferedReader fis = new BufferedReader(new FileReader( patternsFile.toString())); String pattern = null; while ((pattern = fis.readLine()) != null) { patternsToSkip.add(pattern); } } catch (IOException ioe) { System.err .println("Caught exception while parsing the cached file '" + patternsFile + "' : " + StringUtils.stringifyException(ioe)); } } @Override public void setup(Context context) { Configuration conf = context.getConfiguration(); caseSensitive = conf.getBoolean("wordcount.case.sensitive", true); if (conf.getBoolean("wordcount.skip.patterns", false)) { Path[] patternsFiles = new Path[0]; try { patternsFiles = DistributedCache.getLocalCacheFiles(conf); } catch (IOException ioe) { System.err .println("Caught exception while getting cached files: " + StringUtils.stringifyException(ioe)); } for (Path patternsFile : patternsFiles) { parseSkipFile(patternsFile); } } } @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = (caseSensitive) ? value.toString() : value.toString() .toLowerCase(); for (String pattern : patternsToSkip) { line = line.replaceAll(pattern, ""); } StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); context.write(word, one); } } } public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { String[] argv = { "/home/nchc/input", "/home/nchc/output-wc2", "-c", "-skip", "/home/nchc/patterns/patterns.txt" }; args = argv; Configuration conf = new Configuration(); conf.set("mapred.job.tracker", "local"); // for single conf.set("fs.default.name", "file:///"); // for single if (args.length < 2) { System.err .println("Usage: hadoop jar WordCount.jar <input> <output> [-c] [-skip <path>]"); System.exit(2); } for (int i = 0; i < args.length; ++i) { if ("-skip".equals(args[i])) { DistributedCache .addCacheFile(new Path(args[++i]).toUri(), conf); conf.setBoolean("wordcount.skip.patterns", true); } if ("-c".equals(args[i])){ conf.setBoolean("wordcount.case.sensitive", false); } } CheckAndDelete.checkAndDelete(args[1], conf); Job job = new Job(conf, "Word Count"); job.setJarByClass(WordCountV20.class); job.setMapperClass(Map.class); job.setCombinerClass(Reduce.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
Last modified 13 years ago
Last modified on Aug 2, 2011, 4:36:03 PM