wiki:HadoopWorkshopHandsOn

Hadoop Hands-on Labs (1)

Basic DFS command / Hadoop DFS 基本測試環境建立

  1. download hadoop-0.18.2
    $ cd ~
    $ wget http://ftp.twaren.net/Unix/Web/apache/hadoop/core/hadoop-0.18.2/hadoop-0.18.2.tar.gz
    $ tar zxvf hadoop-0.18.2.tar.gz
    
  2. Hadoop 會用 SSH 進行內部連線,因此需要做 SSH Key exchange
    ~$ ssh-keygen
    ~$ cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys
    
  3. 需要 JAVA_HOME 環境變數才能執行 hadoop namenode
    $ echo "export JAVA_HOME=/usr/lib/jvm/java-6-sun" >> ~/.bash_profile
    $ cd ~/hadoop-0.18.2
    
  4. 編輯 conf/hadoop-evn.sh (HADOOP_HOME要設定到你的hadoop安裝目錄)
    export JAVA_HOME=/usr/lib/jvm/java-6-sun
    export HADOOP_HOME=/home/jazz/hadoop-0.18.2/
    export HADOOP_CONF_DIR=$HADOOP_HOME/conf
    
  5. 編輯 conf/hadoop-site.xml 在 configuration 那一段加入以下設定
    <property>
      <name>fs.default.name</name>
      <value>hdfs://localhost:9000/</value>
      <description>
        The name of the default file system. Either the literal string
        "local" or a host:port for NDFS.
      </description>
    </property>
    <property>
      <name>mapred.job.tracker</name>
      <value>localhost:9001</value>
      <description>
        The host and port that the MapReduce job tracker runs at. If
        "local", then jobs are run in-process as a single map and
        reduce task.
      </description>
    </property>
    
  6. 啟動hadoop 的兩道指令
    ~/hadoop-0.18.2$ bin/hadoop namenode -format
    ~/hadoop-0.18.2$ bin/start-all.sh
    
  7. 完成後可以看到以下三個網頁
  1. 也可以放的東西上hdfs去看看
    ~/hadoop-0.18.2$ bin/hadoop dfs -put conf conf
    ~/hadoop-0.18.2$ bin/hadoop dfs -ls
    Found 1 items
    drwxr-xr-x   - jazz supergroup          0 2008-11-04 15:56 /user/jazz/conf
    

Hadoop Hands-on Labs (2)

MapReduce 程式設計練習

  1. 執行 Wordcount 範例
    ~/hadoop-0.18.2$ bin/hadoop fs -put conf conf
    ~/hadoop-0.18.2$ bin/hadoop fs -ls
    Found 1 items
    drwxr-xr-x   - jazz supergroup          0 2008-11-05 19:34 /user/jazz/conf
    ~/hadoop-0.18.2$ bin/hadoop jar /home/jazz/hadoop-0.18.2/hadoop-0.18.2-examples.jar wordcount
    ERROR: Wrong number of parameters: 0 instead of 2.
    wordcount [-m <maps>] [-r <reduces>] <input> <output>
    Generic options supported are
    -conf <configuration file>     specify an application configuration file
    -D <property=value>            use value for given property
    -fs <local|namenode:port>      specify a namenode
    -jt <local|jobtracker:port>    specify a job tracker
    -files <comma separated list of files>    specify comma separated files to be copied to the map reduce cluster
    -libjars <comma separated list of jars>    specify comma separated jar files to include in the classpath.
    -archives <comma separated list of archives>    specify comma separated archives to be unarchived on the compute machines.
    
    The general command line syntax is
    bin/hadoop command [genericOptions] [commandOptions]
    ~/hadoop-0.18.2$ bin/hadoop jar /home/jazz/hadoop-0.18.2/hadoop-0.18.2-examples.jar wordcount conf output
    
  • Wordcount 的原始碼
    ~/hadoop-0.18.2/$ vi src/examples/org/apache/hadoop/examples/WordCount.java
    
  • 示範 Wordcount.java 如何除錯: 故意加一段 IOException 讓 mapper 產生錯誤
          throw new IOException("SUICIDE");
    
  • 使用 ant 重新編譯 hadoop-0.18.2-examples.jar
    ~/hadoop-0.18.2/$ ant examples
    
  • 原理解說:
    • 因為 key 是 Text 型態,因此要設定 OutputKeyClass 為 Text
          conf.setOutputKeyClass(Text.class);
      
    • 詳細說明在官方文件: http://hadoop.apache.org/core/docs/r0.18.2/mapred_tutorial.html
    • Input and Output Formats
      • 通常輸入跟輸出都是純文字格式,因此預設是 TextInputFormat 跟 TextOutputFormat
      • 但如果輸入跟輸出是二進位格式,那就必須使用 SequenceFileInputFormat 跟 SequenceFileOutputFormat 當作 Map/Reduce? 的 KeyClass
    • Input -> InputSplit -> RecordReader
      • Hadoop 會將輸入切成很多塊 InputSplit, 但是可能會遇到要處理的資料在另一塊 InputSplit 的困擾
    • Reducer 個數建議為 0.95 * num_nodes * mapred.tasktracker.tasks.maximum 這裡的 0.95 是為了預留 5% 的時間來處理其他 node 故障所造成的影響。
  • 不會寫 Java 程式的開發者怎麼辦?
    • 方法一: 使用 hadoop-stream
      • 目前處理 binary 的能力仍有限,因此建議使用在純文字處理上。
      • 如果保留原始 hadoop-site.xml 的 configure 描述(沒有加任何 <property>),預設是使用 local filesystem
        ~/hadoop-0.18.2$ cat conf/hadoop-site.xml
        <?xml version="1.0"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
        
        <!-- Put site-specific property overrides in this file. -->
        
        <configuration>
        
        </configuration>
        
        ~/hadoop-0.18.2$ echo "sed -e \"s/ /\n/g\" | grep ." > streamingMapper.sh
        ~/hadoop-0.18.2$ echo "uniq -c | awk '{print $2 \"\t\" $1}'" > streamingReducer.sh
        ~/hadoop-0.18.2$ bin/hadoop jar ./contrib/streaming/hadoop-0.18.2-streaming.jar -input conf -output out1 -mapper `pwd`/streamingMapper.sh -reducer `pwd`/streamingReducer.sh
        
      • 如果有結合 DFS 的話,那必須透過 -file 指令把 mapper 跟 reducer 的程式打包進 DFS
      • 更深入的 streaming 解說文件在 http://hadoop.apache.org/core/docs/r0.18.2/streaming.html
    • 方法二: 使用 Pipes (C++ native support of Hadoop)
    • 方法三: 使用 Pig
      • Pig 是第三種不用學會寫 Java 而改用類似 SQL 語法的方式,Pig 會幫忙產生 MapReduce 程式(java class),然後幫忙執行
  • Taiwan Hadoop User Group 所提供的 PHP + Hadoop Streaming 範例

大量部署 Hadoop 的方法

Last modified 16 years ago Last modified on Apr 7, 2009, 8:41:30 PM