
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Sun™ Shared Visualization 1.1
Software Client Administration

Guide

Part No. 820-3257-10
March 2008, Revision A

http://www.sun.com/hwdocs/feedback

Please
Recycle

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights might include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document might be reproduced in any form by any means without prior written authorization
of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product might be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, docs.sun.com, Sun Ray, and Solaris are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

OpenGL is a registered trademark of Silicon Graphics, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. possède les droits de propriété intellectuels relatifs à la technologie décrite dans ce document. En particulier, et sans
limitation, ces droits de propriété intellectuels peuvent inclure un ou plusieurs des brevets américains listés sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplémentaires ainsi que les demandes de brevet en attente aux les États-Unis et
dans d’autres pays.

Ce document et le produit auquel il se rapporte sont protégés par un copyright et distribués sous licences, celles-ci en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Tout logiciel tiers, sa technologie relative aux polices de caractères, comprise, est protégé par un copyright et licencié par des fournisseurs de
Sun.

Des parties de ce produit peuvent dériver des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux États-Unis et dans d’autres pays, licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, docs.sun.com, Sun Ray, et Solaris sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux États-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

OpenGL est une marque déposée de Silicon Graphics, Inc.

L’interface utilisateur graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox dans la recherche et le développement du concept des interfaces utilisateur visuelles ou graphiques
pour l’industrie informatique. Sun détient une license non exclusive de Xerox sur l’interface utilisateur graphique Xerox, cette licence couvrant
également les licenciés de Sun implémentant les interfaces utilisateur graphiques OPEN LOOK et se conforment en outre aux licences écrites de
Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xiii

1. Sun Shared Visualization 1.1 Introduction 1

Sun Shared Visualization 1.1 Software Introduction 1

Traditional Graphics Models 2

Sun Shared Visualization 1.1 Model 3

Software Components 5

Sun Grid Engine 5

Sun Grid Engine Advance Reservation Server 6

VirtualGL 6

TurboVNC 7

TurboVNC X Extensions 8

Supported Platforms 9

Server Platforms 9

Server Graphics Accelerators 10

Client Platforms 10

Shared Visualization 1.1 Server Starting Techniques 11

Startup Methods 11

Client Types 11

Client Software Installation Matrix 12
iii

Startup Method Guide 13

2. Sun Shared Visualization 1.1 Client Installation 15

Sun Shared Visualization 1.1 Software 15

Installation on a Solaris or Linux Client 16

Software Components That Are Not Needed on a Client 16

▼ To Install Sun Shared Visualization 1.1 Software on a Solaris or Linux
Client 16

▼ To Remove the Sun Ray Plug-In 20

▼ To Remove the Sun Shared Visualization 1.1 Software From Solaris or
Linux Clients 21

Installation on a Windows Client 23

▼ To Install TurboVNC on a Windows Client 23

Enabling VirtualGL Image Transport on a Windows Client 24

▼ To Install VirtualGL on a Windows Client 24

▼ To Install Exceed for Windows 24

Configuring Exceed for Windows 25

▼ To Disable Pixel Format Conversion (for Exceed 2006 and Earlier) 25

▼ To Disable the Backing Store 25

▼ To Obtain Optimal Performance With Exceed 26

Removing Sun Shared Visualization 1.1 Software From a Windows Client 27

▼ To Remove the Sun Shared Visualization 1.1 Software From a
Windows Client 27

3. Manually Using the Sun Shared Visualization 1.1 Software 29

Manual Startup Overview 29

VirtualGL Startup Sequence 30

vglrun Syntax Summary 31

vglrun Verification 31

Using VirtualGL From a Sun Ray Client 32
iv Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

▼ To Use VirtualGL From a Sun Ray Client When the Sun Ray Server and the
Graphics Server Are Different Hosts 32

▼ To Use VirtualGL From a Sun Ray Client When the Sun Ray Server Is the
Graphics Server 33

Using VirtualGL From Other Clients 33

▼ To Use VirtualGL From a UNIX Client 34

Using VirtualGL From a Windows Client 35

▼ To Use VirtualGL From a Windows Client 35

Normal VirtualGL Messages 37

VirtualGL Client-Side Messages 37

VirtualGL Server Messages 38

Troubleshooting VirtualGL 38

▼ To Verify X Server Access 38

Could Not Connect 39

▼ To Reconnect to Your vglclient 39

Manually Using TurboVNC 40

TurboVNC Process Overview 41

Manually Using the vncserver Command 42

▼ To Select a TurboVNC Password 42

▼ To Access the Graphics Server 43

▼ To Start the TurboVNC Server Session 44

▼ To Start a TurboVNC Viewer and Connect to Your TurboVNC Session 44

▼ To Start a Graphics Application Within a TurboVNC Session 47

▼ To Terminate the TurboVNC Session 48

Manually Using the RUN.vncserver Script 49

▼ To Start the TurboVNC Server Session Using RUN.vncserver 50

▼ To Connect a Viewer to Your RUN.vncserver Session 50

Security With TurboVNC 51

▼ To Secure the Connection Between the TurboVNC Server and Viewer 52
Contents v

Performance Notes on TurboVNC and ssh 52

Performance and Measurement 53

Spoiling 53

TurboVNC Quality Controls 54

4. Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 55

Preparing to Use Sun Grid Engine With VirtualGL 56

Determining if Your Client’s X Server Allows Remote TCP Connections 56

Determining if Your Client Host Can Be a Sun Grid Engine Submit Host 57

Sun Grid Engine Submit Host Clients 57

Windows Submit Hosts 57

Clients That Are Not Sun Grid Engine Submit Hosts 57

▼ To Prepare to Use VirtualGL From a Windows Client 58

Submitting Sun Grid Engine Graphics Jobs 58

▼ To Submit Sun Grid Engine Graphics Jobs if Your Client Is Also a Sun Grid
Engine Submit Host 59

▼ To Submit Sun Grid Engine Graphics Jobs if Your Client Is Not a Sun Grid
Engine Submit Host 60

Using Sun Grid Engine to Start Your Graphics Application 61

Easing Graphics Job Submission Using alias 63

Graphics Job Submission Without a Job Script 64

Submitting Sun Grid Engine TurboVNC Jobs 65

▼ To Select a TurboVNC Password 66

▼ To Start the TurboVNC Server Session 66

▼ To Connect a TurboVNC Viewer to Your RUN.vncserver Session 67

▼ To Start a Graphics Application Within a TurboVNC Session 68

▼ To Terminate the RUN.vncserver Session 69

5. Advance Reservations 71

Advance Reservation Overview 71
vi Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Using the Advance Reservation Feature 72

Reserve AR Command-Line Client 72

▼ To Start the AR Client 72

Reserve GUI Client 74

▼ To Start the AR GUI Client 74

▼ To See Pending Reservations 75

▼ To Delete a Reservation 77

Submitting a Job to an Advance Reservation 77

A. VirtualGL Reference 79

Common vglconnect Scenarios 80

Common vglrun Scenarios 81

Chrominance Subsampling 82

Gamma Correction 83

Default Gamma Correction Behavior 83

VirtualGL Options and Environment Variables 84

VirtualGL GUI for Quality and Performance Tradeoff 91

▼ To Start the VirtualGL GUI 92

Using the VirtualGL GUI 92

vglclient options 95

Advanced OpenGL Features 95

Stereographic Rendering 96

Quad-Buffered Stereo 96

Anaglyphic Stereo 97

Transparent Overlays 98

Troubleshooting Common Errors 98

vglconnect and ssh Issues 99

VirtualGL Issues 99

vglclient Messages (Normally in the Log for vglconnect) 102
Contents vii

vis_report Reporting Script 103

Verifying Advanced Feature Support 103

▼ To Verify Quad-Buffered Stererographics on the Server 103

▼ To Verify Client Features 104

GLX Spheres Test Program 104

B. TurboVNC Reference 107

Common TurboVNC Scenarios 107

TurboVNC Server Scenarios 107

TurboVNC Viewer Scenarios 108

TurboVNC Connection Profiles and Dynamic Quality and Performance
Tradeoff 109

▼ To Select the Connection Profile 110

Lossless Refresh 113

▼ To Perform a Lossless Refresh 114

C. Sun Grid Engine Reference 115

Accessing the Sun Grid Engine Environment 115

▼ To Access the Sun Grid Engine Environment 115

Setting Up the Sun Grid Engine Environment Variables 117

▼ To Set Up the Sun Grid Engine Environment Variables 117

Basic Sun Grid Engine Commands 118

qsub and qrsh Commands 119

Some Common qsub and qrsh Options 119

Different Default Behavior of qsub and qrsh 120

Example Sun Grid Engine Job Script 121
viii Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Figures

FIGURE 1-1 Workstation Graphics 2

FIGURE 1-2 Remote X Server Graphics 3

FIGURE 1-3 Shared Visualization 1.1 Server Architecture Using VGL Image Transport 4

FIGURE 1-4 Shared Visualization 1.1 Server Architecture Using Sun Ray Image Transport 5

FIGURE 1-5 TurboVNC Server and Clients – VirtualGL Uses X11 Image Transport 8

FIGURE 3-1 TurboVNC Connection Dialog on a Windows Client 46

FIGURE A-1 VirtualGL’s Configuration Dialog (Showing LAN Defaults) 92

FIGURE B-1 WebVNC Options Dialog 111

FIGURE B-2 TurboVNC Viewer Options Dialog on a Windows Client 112

FIGURE B-3 TurboVNC’s Configuration Dialog (Defaults for High Quality Are Shown) 113
ix

x Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Tables

TABLE 1-1 Supported Server Platforms 9

TABLE 1-2 Server Graphics Accelerators 10

TABLE 1-3 Supported Client Platforms 10

TABLE 1-4 Client Software Installation Matrix 12

TABLE 1-5 Startup Methods for Each Client Type 13

TABLE 2-1 Optional Software Components, All Unneeded on Clients 16

TABLE 3-1 Procedure Sequence for Manually Using TurboVNC 41

TABLE 5-1 runar Reserve Options 72

TABLE 5-2 Field Descriptions 75

TABLE 5-3 Advance Reservation List Heading Descriptions 76

TABLE A-1 Common vglconnect Scenarios 80

TABLE A-2 Common vglrun Scenarios 81

TABLE A-3 Chrominance Subsampling Characteristics 82

TABLE A-4 General VGL_ Environment Variables and vglrun Options 85

TABLE A-5 VGL_ Environment Variables and vglrun Options for Sun Ray Image Transport 91

TABLE A-6 VGL_ Environment Variables and vglrun Options for VGL Image Transport 91

TABLE A-7 VirtualGL GUI Field Descriptions 93

TABLE A-8 vglclient Options for VGL Image Transport 95

TABLE A-9 glxspheres Options 104

TABLE B-1 Common TurboVNC Server Scenarios 107
xi

TABLE B-2 Common TurboVNC Viewer Scenarios 108

TABLE B-3 TurboVNC Connection Profiles 109

TABLE C-1 Basic Sun Grid Engine Commands 118

TABLE C-2 Common qsub and qrsh Options 119

TABLE C-3 Differences in qsub and qrsh Command Options 120
xii Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Preface

This client administration guide provides detailed information and procedures for
the starting and use of the Sun™ Shared Visualization 1.1 software. This document is
written for users who are proficient in shell tool activities, such as system
administrators, and people who have advanced experience with the Solaris™
Operating System, and other computing platforms.

Before You Read This Document
To fully use the information in this document, you must be familiar with the
following software packages:

■ Sun Grid Engine (if your site is using it)
■ X11

How This Document Is Organized
Chapter 1 introduces the Sun Shared Visualization 1.1 software and how the
software interacts with other software packages.

Chapter 2 discusses installation information for a Sun Shared Visualization 1.1 client.

Chapter 3 describes procedures for manually starting the Sun Shared Visualization
1.1 software.

Chapter 4 describes how to use Sun Grid Engine to start the Sun Shared
Visualization 1.1 software.
xiii

Chapter 5 explains how to use the Advance Reservation feature.

Appendix A provides reference information about VirtualGL options and
environment variables.

Appendix B provides basic reference information about TurboVNC.

Appendix C provides basic information about the Sun Grid Engine commands and
options. It also provides a sample Sun Grid Engine job script that can be edited for
your specific use.

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris Operating System documentation, which is at:

http://docs.sun.com

Shell Prompts
Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xiv Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

http://docs.sun.com

Typographic Conventions

Note – Characters display differently depending on browser settings. If characters
do not display correctly, change the character encoding in your browser to Unicode
UTF-8.

Related Documentation

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Application Title
Part
Number Format Location

Getting Started Sun Shared Visualization 1.1 Software Getting Started
Guide

820-0237 Printed
PDF

Shipping kit
Online

Server
Administration

Sun Shared Visualization 1.1 Software Server
Administration Guide

820-3256 PDF Online
Preface xv

The VirtualGL User’s Guide is also present on any system with Sun Shared
Visualization 1.1 software (or VirtualGL) installed:

■ On Solaris systems in file:///opt/VirtualGL/doc/index.html

■ On Linux system in file:///usr/share/doc/VirtualGL-2.1/index.html
(assuming the Virtual GL version is 2.1, as is included in Sun Shared Visualization
1.1 software)

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun is not be responsible or liable for any actual or alleged damage or
loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Release Notes Sun Shared Visualization 1.1 Software Release Notes 820-0232 PDF Online

Sun Grid
Engine

N1 Grid Engine 6 Collection
docs.sun.com/app/docs/coll/1017.3

817-5677
817-5678
817-6117
817-6118

PDF Online

VirtualGL VirtualGL 2.1 User’s Guide
www.virtualgl.org/Documentation/
Documentation

HTML Online

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/

Application Title
Part
Number Format Location
xvi Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

docs.sun.com/app/docs/coll/1017.3
http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/
www.virtualgl.org/Documentation/Documentation
file:///usr/share/doc/VirtualGL-2.1/index.html
file:///opt/VirtualGL/doc/index.html

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Sun Shared Visualization 1.1 Software Client Administration Guide, part number 820-
3257-10
Preface xvii

http://www.sun.com/hwdocs/feedback

xviii Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

CHAPTER 1

Sun Shared Visualization 1.1
Introduction

This chapter introduces the Sun Shared Visualization 1.1 software and how the
software interacts with other software packages. There is also discussion of
supported hardware and Shared Visualization 1.1 server starting techniques. Topics
include:

■ “Sun Shared Visualization 1.1 Software Introduction” on page 1
■ “Software Components” on page 5
■ “Supported Platforms” on page 9
■ “Shared Visualization 1.1 Server Starting Techniques” on page 11
■ “Client Software Installation Matrix” on page 12
■ “Startup Method Guide” on page 13

Sun Shared Visualization 1.1 Software
Introduction
This document introduces and describes the use of the Sun Shared Visualization 1.1
software advanced visualization technologies, without any instructions on installing
or configuring Shared Visualization 1.1 server hosts. That information and system
requirements are available in the Sun Shared Visualization 1.1 Software Server
Administration Guide, 820-3256. See “Related Documentation” on page xv.

Shared Visualization 1.1 server software enables you to use graphics resources (as
well as CPUs, memory, and storage) on the network in place of these resources on
your desktop. A graphics server can be in a back room or data center. The graphics
server can serve multiple clients serially or simultaneously, aiding in collaboration.
1

Storage, compute, and graphics processing can be tightly coupled and secure in the
server room. The server can have more resources than your desktop, and can yield
better performance than running the application on your desktop system.

Traditional Graphics Models
The graphics workstation model in FIGURE 1-1 runs the application on the same host
as the user’s X server and display hardware. Such desktop systems often lack
sufficient resources for demanding applications and large data sets.

FIGURE 1-1 Workstation Graphics

In the application server model in FIGURE 1-2, all graphics pass over the network
from the application server to the graphics client.

FIGURE 1-2 Remote X Server Graphics

Application

X server

Display hardware

Graphics workstation

Application
X server

Display hardware

Graphics client Application server

X protocol and GLX graphics extensions
2 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

As data sets have increased in size, this data transmission has become more of a
burden. Except for performance, an application should run the same whether local
to the client or remote.

Sun Shared Visualization 1.1 Model
The Sun Shared Visualization 1.1 model, shown in FIGURE 1-3, runs the application
on a server host with sufficient resources, including a graphics accelerator.

FIGURE 1-3 Shared Visualization 1.1 Server Architecture Using VGL Image Transport

When the application completes drawing an image, the image is read from the
graphics hardware, compressed (optional), and sent to the client. The client
decompresses the image and displays the pixels for the user. This process is VGL
Image Transport. The application’s X interactions (mouse and keyboard events, and
menu selections) go to the client X server.

The method is similar when the client is a Sun Ray™ thin client, except that the Sun
Ray desktop unit (DTU) client hardware decompresses the images. This process is
Sun Ray Image Transport. A Sun Ray thin client (DTU) has the keyboard, mouse,
and display, but the Sun Ray server runs the client’s X server. See FIGURE 1-4.

Application
X server

Display hardware

Client – Solaris, Linux, or
Graphics server – Solaris or Linux

X protocol (non-OpenGL)

VirtualGL
client
(decompress)

Decompress
and display

VirtualGL
GLX interposer

OpenGL

Graphics
accelerator

on glXSwapBuffers

Compressed
images

Windows with Exceed or Exceed 3D
Chapter 1 Sun Shared Visualization 1.1 Introduction 3

FIGURE 1-4 Shared Visualization 1.1 Server Architecture Using Sun Ray Image Transport

Software Components

Sun Grid Engine
Sun Grid Engine performs resource management and has been extended for
graphics servers to allocate graphics resources, as well as CPUs, memory, and other
components. In an environment that has multiple execution servers or multiple
graphics accelerators on a host, Sun Grid Engine can select a suitable, lightly-loaded
server to run your application, and select a lightly-loaded graphics device on that
server. Grid Engine also starts applications on that execution server, so you need not
log in to the server.

Job scripts can specify options to Sun Grid Engine. In an environment with
heterogeneous execution servers, these options could specify which processor types
and operating systems are capable of running the application.

Application
X server

Sun Ray server – Solaris, Linux Graphics server – Solaris or Linux

X protocol (non-OpenGL)

Sun Ray
hardware

Decompress and display

Sun Ray Client VirtualGL
GLX interposer

OpenGL

Graphics
accelerator

on glXSwapBuffers

Compressed
images
4 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Sun Grid Engine Advance Reservation Server
Advance Reservation (AR) is a feature of some queuing software systems but not yet
present in Sun Grid Engine (SGE) release 6.1. (If you are using a later release of Sun
Grid Engine, check whether that version includes an Advance Reservation feature.)

The AR requirement is to schedule compute and visualization resources at a time
when the computer resources and the persons to use the resources are both
available. The Advance Reservation server makes this possible.

If your Sun Grid Engine installation is running the optional AR server, you can
request a reservation using a command-line utility or a simple graphical user
interface. See “Advance Reservations” on page 71 for more information.

VirtualGL
The key component for remote visualization is VirtualGL (VGL), as shown in
FIGURE 1-3 and FIGURE 1-4. VirtualGL interposes on the application, which enables the
application to remotely send the graphics transparently (to the application). That is,
an unchanged application that was written for a graphics workstation can run on the
Sun Shared Visualization 1.1 server and still provide VirtualGL’s graphics images to
the client’s desktop. VirtualGL reads images from the graphics device, compresses
the images, and transmits the images to the VirtualGL client software (or to the Sun
Ray DTU client hardware).

The compressed images transmitted from the Sun Shared Visualization 1.1 server to
the client often require less network bandwidth than transmitting the graphical data
(as in the Remote X server model, shown in FIGURE 1-2), and can achieve interactive
performance that is comparable or even better.

Advantages of VGL Image Transport compared to TurboVNC, which is introduced
in “TurboVNC” on page 7:
■ Seamless windows – every application window appears as a separate window on

the user’s desktop.
■ Supports advanced display features, such as stereographic and transparent

overlay rendering, if they are available on the client host’s X server.
■ Offers optional built-in encryption.
■ Consumes fewer server CPU cycles, since 2D X11 rendering occurs on the client.

Disadvantages of VGL Image Transport compared to TurboVNC:
■ VGL Image Transport does not work well on high-latency networks.
■ No collaboration features.
■ Requires Exceed for use with Windows clients.
■ The client is not stateless. As with any remote X11 application, if the network

connection drops, then the application will exit.
Chapter 1 Sun Shared Visualization 1.1 Introduction 5

TurboVNC
Shared Visualization 1.1 server also includes Virtual Network Computing (VNC)
software with optimized compression, called TurboVNC. TurboVNC is suitable for
displaying to remote clients on a slow or high-latency network (for example, the
Internet), as well as on LANs. VirtualGL reads back images from the graphics
accelerator but passes the images uncompressed to TurboVNC’s proxy X server on
the graphics server host. This process is X11 Image Transport. This TurboVNC server
compresses the images for viewing by one or more remote TurboVNC clients.

Advantages of TurboVNC compared to VGL Image Transport:

■ TurboVNC performs very well on low-bandwidth, high-latency connections (such
as broadband or long-haul T1 lines). The 3D application’s GUI will load and
render much faster with TurboVNC than with the VGL Image Transport on such
connections.

■ TurboVNC provides rudimentary collaboration capabilities. Multiple TurboVNC
clients can share viewing of and even interaction with the running programs,
passing around control of the keyboard and mouse.

■ The TurboVNC client is stateless. If the network hiccups or the client is otherwise
disconnected, the session remains running on the server and can be rejoined from
any machine on the network.

■ No X server is required on the client machine. This situation reduces the
deployment cost and complexity for Windows clients.

Disadvantages of TurboVNC compared to VGL Image Transport:

■ No seamless windows. All application windows are constrained to a virtual
desktop, which displays in a single window on the client machine.

■ TurboVNC generally requires about 20% more server CPU cycles to maintain the
same frame rate as the VGL Image Transport, both because TurboVNC has to
compress more pixels in each frame (an entire desktop rather than a single
window) and because TurboVNC has to perform 2D (X11) rendering as well as 3D
rendering.

■ TurboVNC does not support stereographic or overlay rendering.
6 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

FIGURE 1-5 TurboVNC Server and Clients – VirtualGL Uses X11 Image Transport

TurboVNC X Extensions

Since the application’s X server is the proxy implemented by TurboVNC, fewer X
extensions are available than on most X servers. The X extensions available within
the TurboVNC session are independent of the client on which vncviewer or
WebVNC are running.

Note – The application has access to the GLX extension through VirtualGL, even
though xdpyinfo does not report this.
Chapter 1 Sun Shared Visualization 1.1 Introduction 7

xdpyinfo displays the following X extensions as being supported by TurboVNC:

For instructions on using TurboVNC, refer to the TurboVNC man pages using the
following command:

Note – For Windows, use the embedded help feature (question mark in upper-right
corner of the window).

Supported Platforms

Server Platforms
TABLE 1-1 describes the server platforms supported by the Sun Shared Visualization
1.1 software.

To use the optional Advance Reservation facility, the server (or client) requires a
Java™ runtime environment (JRE). The earliest version to support Advance
Reservation is JRE 1.5 (known as Java 5).

■ BIG-REQUESTS ■ SYNC

■ MIT-SHM ■ XC-MISC

■ MIT-SUNDRY-NONSTANDARD ■ XTEST

■ SHAPE

man -M /opt/TurboVNC/man {vncserver | Xvnc | vncviewer | vncconnect | vncpasswd}

TABLE 1-1 Supported Server Platforms

Processor Architecture Operating System OS Releases

UltraSPARC® Solaris OS Solaris 8 and later

x64 (AMD64 or Intel 64)
and x86

Solaris OS Solaris 10

x64 (AMD64 or Intel 64)
and x86

Linux Red Hat Enterprise Linux 3, 4, and 5;
SuSE 9 and 10
8 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Server Graphics Accelerators
TABLE 1-2 describes the graphics accelerators supported by the Sun Shared
Visualization 1.1 software, for respective processor architectures.

The Sun Shared Visualization 1.1 software also supports Chromium clusters, when
the Chromium Head Node is configured as a graphics server.

Client Platforms
TABLE 1-3 describes the client platforms supported by the Sun Shared Visualization
1.1 software.

Minimally, the client must:

■ Support 24- or 32-bit pixel true color display
■ For stereographic display support or to use transparent overlays, the client must

also have a high-end 3D graphics accelerator installed.

TABLE 1-2 Server Graphics Accelerators

Processor Architecture Graphics Accelerators Comments

UltraSPARC XVR-2500
XVR-1200
XVR-600

Suitable for stereographic display
Not suitable for stereographic display
Not suitable for stereographic display

x64 (AMD64 or Intel 64)
and x86

NVidia Quadro series
NVidia Quadro Plex
series

TABLE 1-3 Supported Client Platforms

Processor Architecture Minimum
CPU Clock
Speed

Operating
System

OS Releases

UltraSPARC 900MHz Solaris OS Solaris 8 and later

x64 (AMD64 or Intel 64)
and x86

1.0 GHz Solaris OS Solaris 10

x64 (AMD64 or Intel 64)
and x86

1.0 GHz Linux RedHat Enterprise Linux 3, 4, and 5;
SuSE 9 and 10

x64 (AMD64 or Intel 64)
and x86

1.0 GHz Windows Windows XP or Vista. VGL Image
Transport requires Exceed 2006 or
later (or Exceed 3D or later for
stereographic display support)
Chapter 1 Sun Shared Visualization 1.1 Introduction 9

Note – If the client host is using a 3D graphics accelerator, install the vendor’s
current OpenGL library and drivers for that 3D accelerator.

To use the optional Advance Reservation facility, the client requires a Java runtime
environment (JRE). The earliest version to support Advance Reservation is JRE 1.5
(known as Java 5).

Shared Visualization 1.1 Server Starting
Techniques

Startup Methods
Chapter 3 and Chapter 4 give alternative ways to start the Sun Shared Visualization
1.1 server:

■ Chapter 3 – Manual starting

■ Chapter 4 – Using Sun Grid Engine, through job scripts or with options on the
command line

These methods are ordered from the simplest to understand to the more complex.
However, you might find Sun Grid Engine job scripts the easiest to use. The scripts
reduce typing and repetition, because the job script passes specifications to Sun Grid
Engine for you.

Client Types
Depending on your situation, you might have a choice among Shared Visualization
1.1 server clients:

■ Sun Ray thin client, using the Sun Ray’s hardware image decompression.

This client uses VirtualGL’s Sun Ray plug-in (Sun Ray Image Transport) and
offers a seamless window experience.

■ VirtualGL client software (vglclient) on a UNIX (Solaris or Linux) host.

This software uses VGL Image Transport (formerly called Direct mode) to provide
a seamless window experience and good performance on a LAN.
10 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

■ VirtualGL client on Window PCs using the Exceed 2006 (or newer) X server.

This client also uses VGL Image Transport for a seamless window experience.

Note – For applications that use stereographic or transparent overlays, Exceed 3D is
required on a Windows client.

■ TurboVNC session.

This option performs best over a wide-area network (WAN) and offers multiple
client collaboration. Each client of the TurboVNC session needs a TurboVNC
viewer:

■ The Java based WebVNC viewer for use in a web browser (simple)

■ A dedicated vncviewer client software component (better-performing)

This uses VirtualGL in X11 Image Transport (formerly called Raw mode).
Uncompressed images are given to the TurboVNC server (X Proxy) to compress.
The TurboVNC session is within one window on the client desktop.

Client Software Installation Matrix
Chapter 2 describes installation of the Shared Visualization 1.1 software. TABLE 1-4
directs you to the appropriate installation instructions (if any) for your client type.

TABLE 1-4 Client Software Installation Matrix

Client Type VirtualGL Image Transport Used Other Characteristic Installation

Sun Ray
Client

Sun Ray Image Transport to Sun
Ray thin client

No installation is necessary –
neither on Sun Ray nor on
client’s Sun Ray server

VirtualGL
Client

VGL Image Transport to client UNIX VirtualGL
Client

See “Installation on a Solaris or
Linux Client” on page 16

Windows
VirtualGL Client

See “Installation on a Windows
Client” on page 23

TurboVNC
Client

X11 Image Transport to TurboVNC
server, VNC transport to client

UNIX TurboVNC
Viewer

See “Installation on a Solaris or
Linux Client” on page 16

Windows
TurboVNC Viewer

See “To Install TurboVNC on a
Windows Client” on page 23

Java based
TurboVNC Web
Browser Applet

No installation is necessary
Chapter 1 Sun Shared Visualization 1.1 Introduction 11

Startup Method Guide
TABLE 1-4 provides a guide to the starting methods for each client type. Each cell of
the matrix provides a link to the section describing that startup method.

TABLE 1-5 Startup Methods for Each Client Type

Client Type Manually Starting Submitting a Sun Grid Engine Job

Sun Ray Client “Using VirtualGL From a Sun Ray Client”
on page 32

Chapter 4, “Using Sun Grid Engine to Start
the Sun Shared Visualization 1.1 Software”
on page 55

UNIX VirtualGL
Client

“Using VirtualGL From Other Clients” on
page 33

Chapter 4, “Using Sun Grid Engine to Start
the Sun Shared Visualization 1.1 Software”
on page 55

Windows
VirtualGL Client

“Using VirtualGL From a Windows Client”
on page 35

Chapter 4, “Using Sun Grid Engine to Start
the Sun Shared Visualization 1.1 Software”
on page 55

VNC Viewer
or Web Browser

“Manually Using TurboVNC” on page 40 “Submitting Sun Grid Engine TurboVNC
Jobs” on page 65
12 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Chapter 1 Sun Shared Visualization 1.1 Introduction 13

14 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

CHAPTER 2

Sun Shared Visualization 1.1 Client
Installation

This chapter describes installation and configuration information for the Sun Shared
Visualization 1.1 client. Topics include:

■ “Sun Shared Visualization 1.1 Software” on page 15

■ “Installation on a Solaris or Linux Client” on page 16

■ “Installation on a Windows Client” on page 23 which includes these subsections:

■ “To Install TurboVNC on a Windows Client” on page 23
■ “To Install VirtualGL on a Windows Client” on page 24
■ “To Install Exceed for Windows” on page 24
■ “Configuring Exceed for Windows” on page 25

Note – Unless stated otherwise, the majority of examples provided in this chapter
are for the Solaris 10 Operating System.

Sun Shared Visualization 1.1 Software
This section describes how to install the Sun Shared Visualization 1.1 software onto
your client and how to remove the software.

■ Installation on a Solaris or Linux client installs support for both VirtualGL and
TurboVNC.

■ Installation on a Windows client installs either VirtualGL or TurboVNC, or both.

■ A Windows client using VirtualGL Image Transport requires both VirtualGL
and the third-party Exceed (or Exceed 3D) X windows server. (Exceed software
is not included with Sun Shared Visualization software).
15

■ Using TurboVNC does not require Exceed software.

■ A Sun Ray client has nothing to install. (The graphics server has Sun Shared
Visualization software installed.)

Installation on a Solaris or Linux Client

Software Components That Are Not Needed on a
Client
If you are using Sun Grid Engine, your client mounts that software from your grid’s
NFS server. You do not need to install a copy on the client. Therefore, the product’s
optional software (listed in TABLE 2-1) is not required on the client.

The Sun Ray plug-in (Solaris package SUNWvglsr or Linux RPM VirtualGL-
SunRay) is installed by default. Though not harmful, this plug-in is not needed on
any clients. For instructions to remove the plug-in after installation, see “To Remove
the Sun Ray Plug-In” on page 20.

▼ To Install Sun Shared Visualization 1.1 Software
on a Solaris or Linux Client

1. Take one of the following actions, depending on your installation media:

■ Perform Step 2 on page 16 if you are installing the software from a download
directory.

■ Perform Step 3 on page 17 if you are installing the software from the CD-ROM.

2. Install the software from a download directory.

TABLE 2-1 Optional Software Components, All Unneeded on Clients

Solaris packages Linux RPMs

SUNWsge3D sun-n1ge-3D.noarch.rpm

SUNWsgear
SUNWsgeau

SUNWsgearsmr

sun-n1ge-adv_reserv.noarch.rpm
16 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

a. As superuser, change to that directory and extract the zip file.

where package depends on the download, solaris or linux. The directory
structure is created and the files are extracted.

b. Change to the installation script directory:

c. Continue to Step 4 on page 18.

3. Install the software from the CD-ROM.

a. As superuser, insert the Sun Shared Visualization 1.1 CD-ROM into an optical
drive that is connected to your system.

If your system automatically mounts the disc, continue to Step b on page 18.

If your system does not automatically mount the disk, mount it with the
following commands:

where device is:

■ a path (such as /dev/dsk/c0t6d0s2 for the Solaris OS) that is obtained by
running the rmformat command, using dsk rather than rdsk

■ the path /dev/cdrom for Linux

If you are installing the Sun Shared Visualization 1.1 software from a CD-ROM
onto a Linux host, you might see the following error:

This error might occur if you use the automounter with default options, or if you
have noexec in the CD-ROM mount entry of the /etc/fstab file.

To prevent this error, change the noexec option to exec, or mount the CD-ROM
manually using the exec option.

cd /path/to/download/directory
unzip SharedVisualization_1.1_package.zip

cd SharedVisualization_1.1_package

mkdir -p /cdrom/SSV1.1
mount -F hsfs -o ro device /cdrom/SSV1.1

bash: ./install: /bin/bash: bad interpreter: Permission denied
Chapter 2 Sun Shared Visualization 1.1 Client Installation 17

b. Change to the installation directory:

where the cdrom-path depends on your environment:

c. Continue to Step 4 on page 18.

4. Run the installation script:

The script begins:

The script displays the licensing agreement, and asks:

5. To proceed with software installation, type y.

cd cdrom-path

Environment CD-ROM Path

Solaris OS /cdrom/ssv1.1

Red Hat Linux /media/cdrom

SuSE Linux /media/SSV1_1

mkdir (as in Step a on page 17) /cdrom/SSV1.1

./install

Sun Microsystems, Inc. ("Sun") ENTITLEMENT for SOFTWARE

Licensee/Company: Entity receiving Software.

Effective Date: Date of delivery of the Software to You.
....

...
Agreement. No modification of this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.

Please contact Sun Microsystems, Inc. 4150 Network Circle, Santa Clara,
California 95054 if you have questions.

Do you accept the license agreement? [y/n]:
18 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

After agreement, the script begins installation:

The script checks for a newer version of the Sun Shared Visualization 1.1 software. If
the script finds one, the script displays:

Otherwise, the script begins adding packages and asks you about optional software:

The details of this question will vary, depending on your operating system.

6. Answer n.

The optional software is needed only on servers. See “Software Components That
Are Not Needed on a Client” on page 16. The script informs you:

7. Press the Return key to continue installation.

This program installs the software for the Sun Shared Visualization 1.1

Copyright 2007 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

This system has a higher version of Sun Shared Visualization
software than is available in this Release. Sun Shared
Visualization software from this release will not be installed.

application SUNWsge3D Sun Grid Engine Graphic Extensions
application SUNWsgearsmr Sun Grid Engine Graphic Advance Reservations
application SUNWsgeau Sun Grid Engine Graphic Advance Reservations (Usr)

Do you wish to install the optional Software (SUNWsge3D SUNWsgeau
SUNWsgearsmr)? [y,n,?,q]

This script is about to take the following actions:
- Install Sun Shared Visualization Software

To cancel installation of this software, press ’q’ followed by a Return.
 OR

Press Return key to begin installation:
Chapter 2 Sun Shared Visualization 1.1 Client Installation 19

The script begins installing required patches and packages:

The script informs you how to remove the software, and where a log file of the
installation is located:

The log file is named with a date and time stamp. In this example, December 22,
2007 at 9:52 am.

▼ To Remove the Sun Ray Plug-In
The Solaris package SUNWvglsr and the Linux RPM VirtualGL-SunRay are server
support for Sun Ray clients. This plug-in is not needed on a client, though it is
installed by the installation script on a Solaris or Linux host. See “Software
Components That Are Not Needed on a Client” on page 16. When the installation
script is completed, you can leave the plug-in installed or you can remove it.

● Remove the Sun Ray plug-in.

■ For Solaris clients, type:

*** Installing Sun Shared Visualization Software for Solaris 10...
Installing required packages:

SUNWtvnc SUNWvgl SUNWvglsr SUNWvrpt

Installation of <SUNWtvnc> was successful.
Installation of <SUNWvgl> was successful.
Installation of <SUNWvglsr> was successful.
Installation of <SUNWvrpt> was successful.

*** Installation complete.

To remove this software, use the ’remove’ script on this CDROM, or
the following script:

/var/tmp/SharedVis_remove

A log of this installation can be found at:
/var/tmp/SharedVis.install.2007.12.22.0952

pkgrm SUNWvglsr
20 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

■ For Linux clients, type:

▼ To Remove the Sun Shared Visualization 1.1
Software From Solaris or Linux Clients
You might need to remove the Sun Shared Visualization 1.1 software in the future.

1. As superuser, run the removal script.

■ If you are running the removal script installed with the Sun Shared Visualization
1.1 software, type:

■ If you are running the removal script from the CD-ROM:

a. Mount the CD-ROM as in Step a on page 17

b. Then cd onto the CD-ROM as in Step b on page 17.

c. Then type one of the following commands:

■ For Solaris OS:

■ For Linux:

rpm -e VirtualGL-SunRay

/var/tmp/SharedVis_remove

SharedVisualization_1.1/Solaris/remove

SharedVisualization_1.1/Linux/remove
Chapter 2 Sun Shared Visualization 1.1 Client Installation 21

The script starts and identifies the software packages that are to be removed.

The script asks:

2. Press the Return key to begin package removal.

Pressing the Q key and the Return key aborts the script.

The script does a search for the installed packages and displays the progress.

The script concludes and tells you where a log file of the removal is located.

The log file is named with a date stamp. In this example, December 22, 2007.

All required software for the Sun Shared Visualization Software
software will be REMOVED.

The following packages will be removed:
 SUNWvglsr SUNWvgl SUNWtvnc SUNWvrpt

To cancel removal of this software, press ’q’ followed by a Return.
 OR

Press Return key to begin package removal:

*** Found the following packages to remove:
 SUNWvglsr SUNWvgl SUNWtvnc SUNWvrpt
*** Removing old package(s)...

Removal of <SUNWvglsr> was successful.

Removal of <SUNWvgl> was successful.

Removal of <SUNWtvnc> was successful.

Removal of <SUNWvrpt> was successful.

*** Done. A log of this removal can be found at:
/var/tmp/SharedVis.remove.2007.12.22
22 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Installation on a Windows Client
As explained in Chapter 1 (especially through FIGURE 1-3 and FIGURE 1-5), Sun Shared
Visualization software offers two alternative image transport techniques, VirtualGL
Image Transport and TurboVNC (using X11 Image Transport):

■ Using VirtualGL Image Transport on a Windows client requires installing both
VirtualGL and the third-party Exceed (or Exceed 3D) X windows server (which is
not included with Sun Shared Visualization software). VirtualGL provides a more
seamless window experience.

■ Using TurboVNC requires installing only TurboVNC. This technique provides a
single window to each TurboVNC session (on a remote graphics server).
TurboVNC also allows collaborative sharing of a TurboVNC session.

Determine if you need to obtain Exceed and install VirtualGL, install TurboVNC, or
both.

The self-expanding .exe installers are on the CD-ROM in the
SharedVisualization_1.1/Windows directory. (The same directory is available
after unzipping the SharedVisualization_1.1_windows.zip download file.)

▼ To Install TurboVNC on a Windows Client
Installing the TurboVNC package on a Windows machine enables the machine to
start a TurboVNC viewer. You do not need to install VirtualGL on the Windows
client. VirtualGL will run on the graphics server, and will use its X11 Image
Transport to provide images to the TurboVNC server (X proxy). TurboVNC
transports the images to one or more clients, to be displayed by the TurboVNC
viewer or the Web VNC viewer.

1. Locate the TurboVNC installer, TurboVNC.exe.

2. Run the TurboVNC installer, typically by double-clicking its icon.

The only configuration option for installation is the directory in which you want the
files to be installed.
Chapter 2 Sun Shared Visualization 1.1 Client Installation 23

Enabling VirtualGL Image Transport on a
Windows Client
Installing the VirtualGL package on a Windows machine enables the machine to act
as a VGL Image Transport client, along with Exceed or Exceed 3D. You do not need
to install VirtualGL or Exceed on the Windows client machine if only TurboVNC
clients will be used.

▼ To Install VirtualGL on a Windows Client

1. Locate the VirtualGL installer, VirtualGL.exe.

2. Run the VirtualGL installer, typically by double-clicking its icon.

The only configuration option for installation is the directory in which you want the
files to be installed.

▼ To Install Exceed for Windows

1. Install Exceed or Exceed 3D, if the software isn’t already installed.

See the Exceed documentation for instructions.

2. Install patches for Exceed or Exceed 3D, if the patches aren’t already installed.

If your Windows client is using Exceed 2008 to support VirtualGL, you can optimize
performance (as much as a 20 percent gain) by enabling the MIT Shared Memory
Extension (MIT-SHM extension).

Obtain and install the xlib patch xlib.dll v13.0.1.235 (or higher) for Exceed 2008.
This patch is available from the Hummingbird support site:

You need a Hummingbird support account to download the patch.

The Sun Shared Visualization 1.1 Release Notes might contain more recent information
about patches for this product.

3. Add the Exceed software path to your system PATH environment variable.

See the Exceed documentation for instructions, if its path has not already been
added.

http://connectivity.hummingbird.com/support/nc/exceed_patches.html
24 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

http://connectivity.hummingbird.com/support/nc/exceed_patches.html

Configuring Exceed for Windows

▼ To Disable Pixel Format Conversion (for Exceed 2006 and
Earlier)

1. Load Exceed XConfig.

a. Right-click on the Exceed taskbar icon.

b. Select Tools, then Configuration.

2. Open the X Server Protocol applet in XConfig.

Note – If you are using the Classic View mode of XConfig, open the Protocol applet
instead.

3. In the X Server Protocol applet, select the Protocol tab and ensure that the Use 32
Bits Per Pixel For True Color box is unchecked.

4. Click Validate and Apply Changes.

Note – If XConfig asks whether you want to perform a server reset, click Yes.

5. Proceed to “To Disable the Backing Store” on page 25.

▼ To Disable the Backing Store

1. Load Exceed XConfig.

a. Right-click on the Exceed taskbar icon.

b. Select Tools, then Configuration.

2. Open the Other Server Settings applet in XConfig.
Chapter 2 Sun Shared Visualization 1.1 Client Installation 25

Note – If you are using the Classic View mode of XConfig, open the Performance
applet instead.

3. Select the Performance tab and ensure that Default Backing Store is set to None.

.

4. Click Validate and Apply Changes.

Note – If XConfig asks whether you want to perform a server reset, click Yes.

▼ To Obtain Optimal Performance With Exceed
VirtualGL can use the MIT-SHM extension in the Exceed software to accelerate
image drawing on Windows clients. By using this extension, the overall performance
of the VirtualGL pipeline can be improved by as much as 20%. However, Exceed
2008 requires a patch to enable its MIT-SHM extension to work with VirtualGL. See
the Sun Shared Visualization 1.1 Release Notes for details.

1. Load Exceed XConfig.

a. Right-click on the Exceed taskbar icon.

b. Select Tools, then Configuration.

2. Open the X Server Protocol applet in XConfig.

Note – If you are using the Classic View mode of XConfig, open the Protocol applet
instead.
26 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

3. In the X Server Protocol applet, select the Extensions tab and ensure that MIT-
SHM is checked.

4. Click Validate and Apply Changes.

Note – If XConfig asks whether you want to perform a server reset, click Yes.

Removing Sun Shared Visualization 1.1 Software
From a Windows Client
You might need to remove the Sun Shared Visualization 1.1 software in the future.

▼ To Remove the Sun Shared Visualization 1.1 Software From
a Windows Client

● Do one of the following:

■ In a Windows XP client, use the Add or Remove Programs applet in the control
panel.

■ In a Windows Vista client, use the Programs and Features applet.
Chapter 2 Sun Shared Visualization 1.1 Client Installation 27

28 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

CHAPTER 3

Manually Using the Sun Shared
Visualization 1.1 Software

Topics discussed in this chapter include:

■ “Manual Startup Overview” on page 29
■ “VirtualGL Startup Sequence” on page 30
■ “Using VirtualGL From a Sun Ray Client” on page 32
■ “Using VirtualGL From Other Clients” on page 33
■ “Using VirtualGL From a Windows Client” on page 35
■ “Normal VirtualGL Messages” on page 37
■ “Troubleshooting VirtualGL” on page 38
■ “Manually Using TurboVNC” on page 40
■ “Performance and Measurement” on page 53

Manual Startup Overview
If you know which host is your graphics server, you can start the Sun Shared
Visualization 1.1 server manually. You will either need to know which graphics
device or X server on that host will be used, or you will use the server’s default.

Note – VirtualGL’s default is used if neither the vglrun -d option is used nor the
VGL_DISPLAY environment variable is set on the graphics server when vglrun is
invoked. For more on VGL_DISPLAY, see “VirtualGL Options and Environment
Variables” on page 84.

The procedures in this chapter assume that the graphics server already has Sun
Shared Visualization 1.1 software installed and configured as described in Chapter 3
and Chapter 4 of the Sun Shared Visualization 1.1 Server Administration Guide. When
the server is configured that way, access to the graphics accelerator device (and to
29

the server’s X server, if necessary) is granted either to all users or to the vglusers
group. In the latter case, you need to verify that the administrator has added your
login to that group.

Instructions for use of VirtualGL can vary, depending on:

■ Your desired Image Transport (the alternatives are described in Chapter 1).

■ Your client type (Sun Ray thin clients, Solaris and Linux UNIX clients, and
Windows clients). For more information, see “Client Types” on page 11.

■ Whether you are using TurboVNC. For more information, see “Client Types” on
page 11.

In this chapter, use of VirtualGL’s Sun Ray Image Transport and VGL Image
Transport is described first, followed by information on using TurboVNC

While this chapter describes manual starting of the Sun Shared Visualization 1.1
software, self-selection of a graphics device in a shared environment is not advised,
as other users might be using or about to use that device. If you select a device that
others are using, any process sharing the device could exhaust resources (for
example, memory on the graphics accelerator). This exhaustion would cause that
process to quit or all processes sharing the device to become unreasonably slow.
Therefore, sites might prefer to let Sun Grid Engine perform the allocation, as
described in the Sun Shared Visualization 1.1 Software Server Administration Guide, 820-
3256. Chapter 4 describes using Shared Visualization software with Sun Grid Engine.

VirtualGL Startup Sequence
There are two components to be started for remote visualization using VirtualGL’s
VGL or Sun Ray Image Transports:

■ VirtualGL runs on the graphics server, and starts the graphics application.
vglrun interposes between the application and the GLX and OpenGL® libraries,
so VirtualGL can read back completed images from the graphics accelerator and
pass the images to the client for display.

■ The VirtualGL client software runs on the client (host), receiving images from the
graphics server and displaying the images. If the client is a Sun Ray, the Sun Ray
hardware and firmware performs this action instead.

The following sections describe use of VirtualGL for Sun Ray, UNIX (Solaris or
Linux) clients, and Windows clients. When the graphics application starts to use
OpenGL on the server, VirtualGL connects to the VirtualGL client (or Sun Ray) and
starts streaming compressed image sequences to the client. This mode is not
recommended for use on low-bandwidth or high-latency networks.
30 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Note – To use TurboVNC, which is better for low-bandwidth or high-latency
networks, see “Manually Using TurboVNC” on page 40.

vglrun Syntax Summary
Within a session to the graphics server, you start your application under control of
vglrun. The command’s syntax is:

On a Linux graphics server, vglrun is also in /usr/bin, which is included in your
path. On a Solaris graphics server, you can add /opt/VirtualGL/bin to your
path. In these cases, you can type vglrun without specifying its path. The syntax is
therefore:

You can provide vglrun options prior to the name of the graphics application, and
options for the application afterward. For example, vglrun options can improve
image quality at the expense of performance and network bandwidth. See
“VirtualGL Reference” on page 79 for vglrun options.

vglrun Verification
Before attempting a more complex graphics application, you might want to verify
that VirtualGL can communicate with your client. To verify communication
efficiently, first run a simple application, such as
/opt/VirtualGL/bin/glxspheres.

/opt/VirtualGL/bin/vglrun [vglrun-options] application [application-arguments]

vglrun [vglrun-options] application [application-arguments]
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 31

Using VirtualGL From a Sun Ray Client
If your client is a Sun Ray thin client, the VirtualGL Sun Ray plug-in will use the Sun
Ray image transport. That is, the plug-in will compress images for Sun Ray and send
these images directly to the Sun Ray DTU for Sun Ray client hardware
decompression and display. The Sun Ray environment does not use VirtualGL client
software (vglclient).

There are two cases for using the Sun Shared Visualization 1.1 software from a Sun
Ray client, depending on whether the graphics server is also your Sun Ray server.

▼ To Use VirtualGL From a Sun Ray Client When
the Sun Ray Server and the Graphics Server Are
Different Hosts

1. Open a new terminal window that will be dedicated to the graphics server session.

2. In the same terminal window, open a Secure Shell session into the graphics server
with the ssh command:

Replace user with your user account name on the graphics server. If your account
name is the same on the current host as on the graphics server, then the user@ can be
omitted. Replace graphics-server with the hostname (or IP address) of your graphics
server.

3. Within the ssh session, start a graphics application using vglrun:

The VirtualGL Sun Ray Image Transport will be used. ssh will set your DISPLAY
environment variable for you to the graphics-server end of an X tunnel. The result is
that the X command stream is encrypted and routed to your Sun Ray server.
However, VirtualGL detects this situation and transmits images directly to your Sun
Ray DTU.

sunrayserver% ssh -X user@graphics-server

graphics-server% /opt/VirtualGL/bin/vglrun [vglrun-options] my-program [my-arguments]
[VGL] NOTICE: Automatically setting VGL_CLIENT environment variable to
[VGL] 100.200.30.45, the IP address of your SSh client.
32 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

▼ To Use VirtualGL From a Sun Ray Client When
the Sun Ray Server Is the Graphics Server

● In any terminal window, start any graphics application using vglrun:

The VirtualGL Sun Ray Image Transport will be used.

Using VirtualGL From Other Clients
This section describes using VirtualGL’s VGL Image Transport from Solaris, Linux,
and Windows clients. Use this mode on local-area networks. Procedures in this
section assume you are already logged into the client.

This section has slight variations based on your security choice:

■ X11 Forwarding, VGL unencrypted – The X11 traffic is encrypted, but the
VirtualGL image stream is left unencrypted to maximize performance.

■ SSL-Encrypted VGL Images – Both X11 traffic and the VirtualGL image stream
are encrypted. However, enabling SSL (Secure Socket Layer) encryption can
reduce VirtualGL performance by as much as 20% on a high-speed network such
as fast (100 Mbps) Ethernet.

■ X11 Forwarding, ssh-Encrypted VGL – Both X11 traffic and the VirtualGL image
stream are tunneled through the ssh connection, providing a secure solution. The
design of your network and your security policy might regulate you to use
encrypted VGL Image Transport. However, using ssh tunneling can reduce
VirtualGL performance by 20-40% on a high-speed network such as fast (100
Mbps) Ethernet, especially for Windows clients.

Also, in this case, vglconnect will make two ssh connections into the server
(the first to find an open port on the server and the second to create the secure
image tunnels and open the Secure Shell). If you are not using an ssh agent to
create password-less logins, then this mode will require you to enter your
password twice.

Before each use, start by deciding which security choice you will use.

graphics_server% /opt/VirtualGL/bin/vglrun [vglrun-options] my-program [my-arguments]
[VGL] NOTICE: Automatically setting VGL_CLIENT environment variable to
[VGL] 100.200.30.45, the IP address of your SSh client.
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 33

▼ To Use VirtualGL From a UNIX Client
1. Start the client’s X server and log into the client.

2. Open a new terminal window that will be dedicated to the graphics server
session.

3. In the same terminal window, open a Secure Shell session into the graphics server
using vglconnect:

Your vglconnect-option value depends on your security choice:

You can use vglconnect -s to create multilayered ssh tunnels. For instance, if the
VirtualGL server is not directly accessible from the Internet, you can use
vglconnect -s to connect to a gateway server, then use vglconnect -s again
on the gateway server to connect to the VirtualGL server. Both the X11 and the VGL
image traffic will be forwarded from the VirtualGL server through the gateway and
to the client.

Replace user with your user account name on the graphics server. If your account
name is the same on the current host as on the graphics server, then the user@ can be
omitted. Replace graphics-server with the hostname (or IP address) of that graphics
server.

client% /opt/VirtualGL/bin/vglconnect [vglconnect-option] user@graphics-server
VirtualGL Client v2.1 (Build 20071109)
Listening for SSL connections on port 4242
Listening for unencrypted connections on port 4243
Redirecting output to /home/susieq/.vgl/vglconnect-client-:0.0.log

Security Choice vglconnect-option Value

X11 Forwarding, VGL unencrypted (no vglconnect-option value is used)

SSL-Encrypted VGL Images (no vglconnect-option value is used)

X11 Forwarding, ssh-Encrypted VGL -s
34 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

4. Within the ssh session, start any graphics application using vglrun:

Your vglrun-options value depends in part on your security choice:

Replace graphics-program with your graphics program’s executable file name, script
name, or pathname. Provide any options or arguments to the graphics program at
the end of the command line.

No action is required on the client as long as the SSL port traffic is not blocked by
the client’s firewall. By default, the client automatically accepts SSL or unencrypted
connections.

Using VirtualGL From a Windows Client
A PC running Windows can be a client with Exceed 2006 or newer. For applications
that use stereographic or transparent overlays, Exceed 3D is required on the client.
The client desktop must be configured to display true color (24-bit pixels).

Instructions for installing and configuring VirtualGL on Windows are in
“Installation on a Windows Client” on page 23, or the VirtualGL User’s Guide. See
“Related Documentation” on page xv. Ensure that Exceed has been configured.

This section describes using VirtualGL’s VGL Image Transport from a Windows
client. This mode is not recommended for use on low-bandwidth or high-latency
networks. Those networks require the Exceed (or Exceed 3D) X server to be installed
on the Windows client.

▼ To Use VirtualGL From a Windows Client
1. Start Exceed if it isn’t already started.

Hover the mouse pointer over the Exceed taskbar icon and make a note of the
Exceed display number (for example, Exceed 0.0 Multiwindow Mode.)

graphics-server% /opt/VirtualGL/bin/vglrun [vglrun-options] graphics-program [my-arguments]
[VGL] NOTICE: Automatically setting VGL_CLIENT environment variable to
[VGL] 100.200.30.45, the IP address of your SSh client.

Security Choice vglrun-option Value

X11 Forwarding, VGL unencrypted (no vglrun-option value is used)

SSL-Encrypted VGL Images +s

X11 Forwarding, ssh-Encrypted VGL (no vglrun-option value is used)
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 35

2. Open a new command prompt window and set the DISPLAY environment
variable.

Replace :0.0 with the Exceed display number.

If you only ever plan to use one Exceed session at a time, then you can set the
DISPLAY environment variable in your global user environment (found in Control
Panel->System->Advanced->Environment Variables).

3. In that same command window, open a Secure Shell session into the graphics
server using vglconnect:

Your vglconnect-option value depends on your security choice:

vglconnect -s can be used to create multilayered ssh tunnels. For instance, if the
VirtualGL server is not directly accessible from the Internet, you can use
vglconnect -s to connect to a gateway server, then use vglconnect -s again on
the gateway server to connect to the VirtualGL server. Both the X11 and the VGL
image traffic will be forwarded from the VirtualGL server through the gateway and
to the client.

Replace user with your user account name on the graphics server. Replace graphics-
server with the hostname (or IP address) of that graphics server.

C> set DISPLAY=:0.0

C> cd /d "c:\program files\virtualgl-version-build"
C> vglconnect [vglconnect-option] user@graphics-server

Security Choice vglconnect-option Value

X11 Forwarding; VGL unencrypted (no vglconnect-option value is used)

SSL-Encrypted VGL Images (no vglconnect-option value is used)

X11 Forwarding; ssh-Encrypted VGL -s
36 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

4. Within the ssh session, start a graphics application using vglrun:

Your vglrun-options value depends in part on your security choice:

Replace graphics-program with your graphics program’s executable file, script name,
or pathname. Provide any options or arguments to the graphics program at the end
of the command line.

No action is required on the client as long as the SSL port traffic is not blocked by
the client’s firewall. By default, the client automatically accepts SSL or unencrypted
connections.

Normal VirtualGL Messages

VirtualGL Client-Side Messages
When using the VGL Image Transport, vglconnect starts a vglclient daemon
that awaits connections from VirtualGL applications (started with vglrun) from
remote graphics servers. The VirtualGL client uses negligible resources until a server
process connects to the client.

vglconnect prints messages identifying the ports used:

graphics_server% /opt/VirtualGL/bin/vglrun [vglrun-options] graphics-program [my-arguments]
[VGL] NOTICE: Automatically setting VGL_CLIENT environment variable to
[VGL] 100.200.30.44, the IP address of your SSh client.

Security Choice vglrun-option Value

X11 Forwarding, VGL unencrypted (no vglrun-option value is used)

SSL-Encrypted VGL Images +s

X11 Forwarding, ssh-Encrypted VGL (no vglrun-option value is used)

client% /opt/VirtualGL/bin/vglconnect graphics-server
VirtualGL Client v2.1 (Build 20071109)
Listening for SSL connections on port 4242
Listening for unencrypted connections on port 4243
Redirecting output to /home/susieq/.vgl/vglconnect-client-:0.0.log
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 37

If vglconnect is used more than once from the same client (for example, to connect
to a different graphics server), it might tell you that vglclient is already running
on this X display:

This output is fine. vglclient is designed to stay active in the background and
available for subsequent connection from any number of remote applications.

VirtualGL Server Messages
vglrun marks its innocuous messages with NOTICE. If the VGL_CLIENT
environment variable is not set, but ssh environment variables are set, VirtualGL
will set VGL_CLIENT from the ssh variables, and print this message to remind you,
in case you intended to do something else:

Troubleshooting VirtualGL
This section provides a starting point for analyzing problems with the use of
VirtualGL’s VGL Image Transport.

▼ To Verify X Server Access
You can verify the ability of an application on the graphics server to access your
client’s X server.

● Start the xclock application.

client% /opt/VirtualGL/bin/vglconnect myserver
vglclient is already running on this X display and accepting SSL
 connections on port 4243.
vglclient is already running on this X display and accepting unencrypted
 connections on port 4242.

[VGL] NOTICE: Automatically setting VGL_CLIENT environment variable to
[VGL] 100.200.30.44, the IP address of your SSh client.
38 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

■ For the Solaris Operating System, type:

■ For Linux, type:

The appearance of the xclock application verifies access.

Tip – If the clock does not appear, although the $DISPLAY value is correct, the client
might be too secure to allow remote TCP access. The client host’s system
administrator can configure the client’s X server to allow remote TCP access.

Could Not Connect
If a vglclient had been running on this client but is no longer running and active,
you might see this server message:

This message indicates that the vglrun process could not communicate with the
vglclient process on the client. Sometimes additional messages follow, such as:

▼ To Reconnect to Your vglclient
When your server’s VirtualGL cannot connect to your vglclient, follow these
steps on your client:

1. Run vglclient -kill to make sure that there aren’t any vglclient processes
running.

This action might print the process ID of a vglclient process being terminated.

my_server% /usr/openwin/bin/xclock &

my_server% xclock &

[VGL] ERROR: Could not connect to VGL client. Make sure that vglclient is
[VGL] running and that either the DISPLAY or VGL_CLIENT environment
[VGL] variable points to the machine on which vglclient is running.

[VGL] ERROR: in rrsocket.cpp--
[VGL] 226: Connection refused
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 39

2. Restart the vglclient by using vglconnect with the -force option.

If your application (or a specific sequence of actions) repeatedly causes vglclient
to crash, file a bug report.

Manually Using TurboVNC
If TurboVNC or a web browser is used for the client, this section provides detailed
information. This method is well suited for a slow or high-latency network (for
example, the Internet) but also performs well on a faster network, such as a LAN.
TurboVNC also enables multiple clients to share graphics applications, aiding in
collaboration.

On a Solaris or Linux host, you can read the TurboVNC man pages with a command
such as:

You can read additional related man pages by substituting the following for
vncserver:

■ Xvnc
■ vncviewer
■ vncconnect
■ vncpasswd

Note – For Windows, after installing TurboVNC, use the embedded help feature.
The icon for help is a question mark in the upper-right corner of the TurboVNC
viewer window.

There are two components to be started:

■ TurboVNC (Virtual Network Computing) server running on the graphics server

■ One or more clients viewing the TurboVNC session using one of these types of
TurboVNC client viewing software:

■ The Java based Web VNC viewer software runs within a web browser on the
client (simple – requires no installation)

client% /opt/VirtualGL/bin/vglconnect -force user@my-server

man -M /opt/TurboVNC/man vncserver
40 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

■ A dedicated TurboVNC vncviewer client software component (much better-
performing)

Some users can use the TurboVNC vncviewer client while others sharing the
same VNC session use the Java based Web VNC viewer.

TurboVNC Process Overview
To run your application within a TurboVNC session hosted on the graphics server,
you use these six steps:

1. Set TurboVNC’s password using vncpasswd.

Note – Do this step upon the initial execution. The step does not need to be
repeated for later runnings.

2. Access the graphics server.

3. Start a TurboVNC session on the graphics server.

4. Start a TurboVNC viewer on your client (host). Additional viewers can be started
by collaborators. This step is dependent on which TurboVNC viewer is used.

5. Start your application within the TurboVNC session on the graphics server.
Invoke the application using vglrun, so the application is under the control of
VirtualGL.

6. Eventually, terminate the TurboVNC server session (and all clients).

These steps differ slightly depending on whether you choose to use the vncserver
command or the RUN.vncserver script, which is part of the optional Sun Grid
Engine Additions. RUN.vncserver might be easiest, but requires the same home
directory to be shared by the client host and the graphics server.

The procedures to follow for either choice are listed in TABLE 3-1. The third and
fourth procedures in each sequence are different.

TABLE 3-1 Procedure Sequence for Manually Using TurboVNC

Procedure
Order With the vncserver Command With the RUN.vncserver Script

1 “To Select a TurboVNC Password” on page 42 “To Select a TurboVNC Password” on page 42

2 “To Access the Graphics Server” on page 43 “To Access the Graphics Server” on page 43

3 “To Start the TurboVNC Server Session” on
page 44

“To Start the TurboVNC Server Session Using
RUN.vncserver” on page 50
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 41

Manually Using the vncserver
Command
The following sections detail the six steps for manually using the Sun Shared
Visualization 1.1 software with the vncserver command.

▼ To Select a TurboVNC Password
Before running the TurboVNC server for the first time, you should select a
TurboVNC password, which may differ from your login password.

● Start vncpasswd:

If /opt/TurboVNC/bin is in your $PATH, then you can start vncpasswd. The view-
only password is an alternate password to be given to a collaborator you want to
enable to join your TurboVNC session. This collaborator can only view your session,
not move the mouse, nor enter keyboard or mouse events. The TurboVNC password
(and any view-only password) will be used by all sessions started by this user using
the same $HOME directory. The password can be changed before any session.

4 “To Start a TurboVNC Viewer and Connect to
Your TurboVNC Session” on page 44

“To Connect a Viewer to Your RUN.vncserver
Session” on page 50

5 “To Start a Graphics Application Within a
TurboVNC Session” on page 47

“To Start a Graphics Application Within a
TurboVNC Session” on page 47

6 “To Terminate the TurboVNC Session” on
page 48

“To Terminate the TurboVNC Session” on
page 48

client% /opt/TurboVNC/bin/vncpasswd
Using password file /home/susieq/.vnc/passwd
Password:
Verify:
Would you like to enter a view-only password (y/n)? n

TABLE 3-1 Procedure Sequence for Manually Using TurboVNC

Procedure
Order With the vncserver Command With the RUN.vncserver Script
42 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

▼ To Access the Graphics Server
● Take one of the following actions:

■ On a Solaris or Linux client:

Open a new terminal window. Within the window, use ssh to access the graphics
server:

■ On a Windows client

Open a command prompt window. Within the window, use putty to access the
graphics server:

Replace user with your user account name on the graphics server. Replace graphics-
server with the hostname (or IP address) of that graphics server.

The DISPLAY environment variable on the graphics server shell is irrelevant to the
TurboVNC session you are about to establish. The TurboVNC server is itself an X
server. Within the TurboVNC session all windows have a DISPLAY value starting
with my-server.

client% ssh user@my-server
Password:
Last login: Wed May 12 13:33:52 2006 from client
Sun Microsystems Inc. SunOS 5.10 Generic January 2005

C> "c:\program files\turbovnc\putty" user@graphics-server
Password:
Last login: Wed May 12 13:33:52 2006 from client
Sun Microsystems Inc. SunOS 5.10 Generic January 2005
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 43

▼ To Start the TurboVNC Server Session
● Start the TurboVNC server on the graphics server host using the vncserver

script.

If the graphics server is running Solaris software, the submission looks like the
following:

If you add/opt/TurboVNC/bin to your $PATH, you can start vncviewer without
typing the path.

You can specify a size (in pixels) for the vncserver’s created desktop using its
-geometry w x h option. If the size is too small, applications might not fit. But if
the size is too large, you are not able to display all of the desktop at once on your
client, so you will get scroll bars.

The terminal window shell displays the vncserver’s output. The key line of output
displays the TurboVNC display name (and is set off by blank lines). Note the server
name (my_server in this example) and X display number (1 here). You can think of
the values, separated by the colon, as the display name, such as my_server:1 in
this example.

The ssh session to the graphics server can now be exited, if desired. However, you
might want to use this session as a reminder to eventually kill the VNC server.

▼ To Start a TurboVNC Viewer and Connect to
Your TurboVNC Session
This procedure differs, based on which TurboVNC viewer you use on your client:

■ The Java based TurboVNC viewer software runs within a web browser on the
client (simple)

■ A dedicated vncviewer client software component (much better-performing)

Once your TurboVNC viewer is connected to your TurboVNC session, within this
TurboVNC X session you can create multiple terminals (shell windows) and start
graphics applications.

1. Decide which VNC viewer you will use.

my_server% /opt/TurboVNC/bin/vncserver

New ’X’ desktop is my_server:1

Starting applications specified in /home/susieq/.vnc/xstartup
Log file is /home/susieq/.vnc/server:1.log
44 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

■ To use a simple Java-based TurboVNC client viewer in your web browser,
continue with Step 2.

■ To use a TurboVNC viewer that performs better, continue with Step 3.

2. Connect your web browser to your TurboVNC session.

In your web browser, type the URL containing the server name and the port number,
which is 5800 + the display number noted previously.

For the previous example (my_server:1, where the display number is 1), the URL
is http://my_server:5801. The web server displays a separate TurboVNC Java
applet window. This window enables you to set options. (You also can change
options using the Options button at the top of the TurboVNC session window.) This
window will prompt you for the TurboVNC password before it enables you to view
the TurboVNC session.

After the viewer is enabled, continue with the next procedure, “To Start a Graphics
Application Within a TurboVNC Session” on page 47.

3. Locate your TurboVNC server’s display name.

This display name is the graphics server name and the X display number, separated
by a colon. (The name my_server:1 is used in the examples in this procedure.)

This name is available when you start your TurboVNC server.

You will include this display name as an option to the TurboVNC viewer, so the
viewer can connect to your TurboVNC server.

4. Start a TurboVNC viewer connected to your TurboVNC session.

VNC offers a client program specifically for use on the client host as a remote
TurboVNC viewer, which can offer better window system integration and much
better performance than the web browser technique.

On a Solaris or Linux client, the TurboVNC viewer (vncviewer) is in
/opt/TurboVNC/bin/. If you add this directory to your $PATH variable, you can
start vncviewer without typing the path.
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 45

■ On a Solaris or Linux client, your command and the vncviewer output might be
the following:

If you do not put your graphics server’s VNC display name on the vncviewer
command line, a small vncviewer window will prompt for it. Enter the display
name and press the Return key.

The TurboVNC viewer prompts you for your TurboVNC password and then
enables you to view the TurboVNC session.

■ On a Windows client, select TurboVNC Viewer in the TurboVNC Start Menu
group.

a. Select a connection profile in the dialog.

FIGURE 3-1 TurboVNC Connection Dialog on a Windows Client

client% /opt/TurboVNC/bin/vncviewer my_server:1
Connected to RFB server, using protocol version 3.7
Enabling TightVNC protocol extensions
Performing standard VNC authentication
Password:
VNC authentication succeeded
46 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

b. When prompted, enter your password and click OK.

For more information on connection profiles, which allow control of the tradeoff
between quality and performance, see “TurboVNC Connection Profiles and
Dynamic Quality and Performance Tradeoff” on page 109.

A TurboVNC session window appears on your client host. This client window
views the TurboVNC X server on the TurboVNC server host. Within this
TurboVNC session, you can launch X Windows applications that will run on the
server host.

▼ To Start a Graphics Application Within a
TurboVNC Session
Within the TurboVNC session, you might type commands to the graphics server’s
shell windows normally. However, when you are ready to run a graphics
application, you must use VirtualGL’s vglrun command. vglrun interposes
between the application and the GLX library so vglrun can read back completed
images from the graphics accelerator and pass the images to the TurboVNC server.
The vglrun command can be in your $PATH. Otherwise, you need to use a full path
to the vglrun command.

VirtualGL avoids compressing the graphics images VirtualGL gives to the
TurboVNC server on the same host. TurboVNC compresses images it sends to its
viewer. TurboVNC also sends images to clients only as fast as the client can display
the images. Therefore, the VNC server will not necessarily send every updated
frame to every client.

● Use a vglrun command to start your graphics application.

For example, enter this command from within a terminal window in the TurboVNC
session:

my_server% /opt/VirtualGL/bin/vglrun myprogram
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 47

Note – If you have used the RUN.vncserver script, the vglrun command should
be in your $PATH, since RUN.vncserver added vglrun‘s directory. But the .cshrc
or .profile in your $HOME might have overridden the $PATH the file inherits. In
that case, you need to use a full path to the vglrun command.

If you attempt to run an OpenGL application from within your TurboVNC session
without remembering to use vglrun (but with $DISPLAY directing the application
to your TurboVNC session), you might get an error message such as:

▼ To Terminate the TurboVNC Session
Do not forget to save your work and terminate the TurboVNC session when you are
done with it.

You cannot just exit the viewer (quit your web browser, leave the TurboVNC page,
or exit the vglviewer) because the TurboVNC server continues to run. When you
have saved your work, you must cause the TurboVNC session and all TurboVNC
foreground processes to exit.

● Take one of the following actions:

■ Use the TurboVNC session’s window manager logout procedure.

■ From within the TurboVNC session or from any session to the same graphics
server, issue a kill command to the graphics server host. Include the display
number noted upon startup of the TurboVNC session (1 in the example):

When the TurboVNC server exits, vglviewer exits, but a web browser viewer
prompts for a session password.

To list the X display numbers and process IDs of all TurboVNC server sessions that
are currently running under your user account on this system, type:

Xlib: extension "GLX" missing on display "my_server:1.1"

my_server% /opt/TurboVNC/bin/vncserver -kill :1

my_server% /opt/TurboVNC/bin/vncserver -list
48 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Manually Using the RUN.vncserver
Script
Even without submitting a job to Sun Grid Engine, the RUN.vncserver script that
is an optional part of Shared Visualization 1.1 server installation can help start the
TurboVNC server. This script is available to clients that have mounted the Sun Grid
Engine installation from the grid’s NFS server.

This process is nearly identical to the process described in “Manually Using the
vncserver Command” on page 42. However, a file holds the TurboVNC server’s
DISPLAY value, relieving the user of this burden. Because the file is under the user’s
$HOME, it also has these two disadvantages:

■ The client host and the graphics server are assumed to share the same home
directory.

■ The user can have no more than one script-started TurboVNC session active at a
time.

The first two procedures in the sequence are the same whether you are using the
vncserver command or the RUN.vncserver script:

■ First, to select a TurboVNC password, see “To Select a TurboVNC Password” on
page 42. This procedure must be performed sometime prior to using the
RUN.vncserver command.

■ Second, to access the graphics server, see “To Access the Graphics Server” on
page 43.

When you use the RUN.vncserver script, the third and fourth procedures in the
sequence are different and easier:

■ Third, to start the TurboVNC server session, see “To Start the TurboVNC Server
Session Using RUN.vncserver” on page 50.

■ Fourth, to connect a viewer to the session, see “To Connect a Viewer to Your
RUN.vncserver Session” on page 50.

The final two procedures are the same in both cases:

■ Fifth, to start an application, see “To Start a Graphics Application Within a
TurboVNC Session” on page 47.

■ Finally, to terminate the TurboVNC or RUN.vncserver session, see “To
Terminate the TurboVNC Session” on page 48.

The procedures included in this section are the two that are different when you use
RUN.vncserver.
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 49

▼ To Start the TurboVNC Server Session Using
RUN.vncserver

Note – This section substitutes for “To Start the TurboVNC Server Session” on
page 44.

1. Type the RUN.vncserver command:

The output and any errors from the RUN.vncserver script is in
$HOME/vncserver.log. If your personal configuration files, such as
$HOME/.profile or $HOME/.cshrc do not override the $PATH or csh $path
established by the RUN.vncserver script, then vglrun (used to start a graphics
application) is in your $PATH.

2. Add the configuration files to the $PATH the files receive, rather than replacing
that path.

Your grid can have a different script for this purpose, specific to your environment.

Note – The files written by the RUN.vncserver script are in your $HOME on the
execution host (graphics server), if that differs from your $HOME on your client
(host).

After starting the VNC server, the ssh session to the graphics server can now be
exited, if desired. However, you might want to use this session as a reminder to
eventually exit the VNC server.

▼ To Connect a Viewer to Your RUN.vncserver
Session

Note – This section substitutes for “To Start a TurboVNC Viewer and Connect to
Your TurboVNC Session” on page 44.

This step depends on your TurboVNC viewer. Either viewer should be convenient,
as long as the graphics server host and the client host share the same $HOME
directory.

my_server% /gridware/sge/graphics/RUN.vncserver &
50 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

1. Connect your web browser to your TurboVNC session.

The RUN.vncserver script creates files in your $HOME directory starting with vnc_.
The file $HOME/vnc_url should redirect your browser to the execution server and
port number for your TurboVNC session. If your web browser expands $HOME, you
could simply enter (or select a bookmark for) $HOME/vnc_url or
file://$HOME/vnc_url. If neither of these methods work, you can expand $HOME
yourself and type file:// and your home directory followed by /vnc_url (for
example, file:///home/susieq/vnc_url). This action redirects your browser to
the URL contained in your vnc_url file.

Note – The files written by the RUN.vncserver script are in your $HOME on the
execution host (graphics server), if that $HOME differs from your $HOME on your
client (host).

You can also view your $HOME/vnc_url file and use your browser to view the URL
contained in that file (for example, http://my_server:5802).

The web page prompts you for the TurboVNC password and then enables you to
view the TurboVNC session. Within this TurboVNC X session, you can create
multiple terminals (shell windows) and start graphics applications. See “To Start a
Graphics Application Within a TurboVNC Session” on page 47.

2. Start a TurboVNC viewer connected to your RUN.vncserver session.

The script saves the graphics server name and port number in the file
$HOME/vnc_server in a format useful to the TurboVNC viewer. You can start the
TurboVNC viewer on your client (host) by appending
‘cat $HOME/vnc_server‘ as an option to your vncviewer starting. If your client
is running Linux, your command might be:

You can make a shell alias for this command.

Security With TurboVNC
Normally, the connection between the TurboVNC server and the TurboVNC viewer
is completely unencrypted, but securing that connection can be easily accomplished
by using the port forwarding feature of Secure Shell (ssh).

client% /opt/TurboVNC/bin/vncviewer ‘cat $HOME/vnc_server‘
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 51

▼ To Secure the Connection Between the
TurboVNC Server and Viewer

1. Start a TurboVNC session on the server.

2. Open a new ssh connection into the server with one of the following command
lines:

■ On a Solaris or Linux client:

■ On a Windows client:

In either case, replace user with your user account name on the graphics server.
Replace graphics-server with the hostname (or IP address) of that graphics server.

Replace 5900+n with the sum of 5900 and the X display number of the TurboVNC
server session to which you want to connect.

For instance, if you want to connect to display :1 on server my_server using user
account my_user, you type:

3. Start the TurboVNC viewer and point it to localhost:n (localhost:1 in the
preceding example).

Performance Notes on TurboVNC and ssh

For LAN connections and other high-speed networks, tunneling the TurboVNC
connection over ssh will reduce performance by as much as 20 to 40 percent. But for
connections such as wide-area networks and broadband, there is little or no
performance penalty for using ssh tunneling with TurboVNC.

client% ssh -L 5900+n:localhost:5900+n user@graphics-server

C> "c:\program files\turbovnc\putty" -L 5900+n:localhost:5900+n user@graphics-server

client% ssh -L 5901:localhost:5901 my_user@my_server
52 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Performance and Measurement
This section describes controlling and measuring VirtualGL performance. Additional
information is in Appendix A and Appendix B.

Spoiling
By default, VirtualGL discards frames when it is already busy sending a frame. This
behavior, called spoiling, allows the most recent frame to appear sooner at the client.
The most recent frame need not wait behind older frames. However, this behavior
means that the application and graphics accelerator spend time producing frames
that will be discarded. The -spoil option to vglrun disables spoiling. This
behavior forces every distinct frame that is produced by the application to be
transported to the client and displayed. Therefore, this behavior slows the
application to the speed at which the frames can be compressed, transmitted,
decompressed, and displayed. In this way, the application’s stated performance
matches the client’s results.

The vglrun +profile option outputs (typically, to the vglconnect log file) lines
that show its performance for compression, transmission, decompression, display,
and overall (total) performance in frames per second (fps) and megapixels per
second.

For example, an application with spoiling enabled might produce 60 frames per
second, of which 10 are displayed for the user. The application reports that its
performance is 60 frames per second. However, the vglrun profile output shows a
total of only 10 fps.

If you rerun vglrun with -spoil, the application’s performance will match the
profile performance of vglrun. Because resources are not spent producing
discarded frames, more than 10 fps might now reach the client (depending on where
the bottleneck was). This example might now produce, transmit, and display to the
client 20 fps.

TurboVNC also spoils frames, but its behavior cannot be controlled by VirtualGL
options or environment variables. Each VNC client pulls a frame from the server
when it is ready, rather than the server pushing images to the clients when the image
has been updated by an application.
Chapter 3 Manually Using the Sun Shared Visualization 1.1 Software 53

TurboVNC Quality Controls
TurboVNC supports both static and dynamic controls over quality and performance
tradeoffs. See “TurboVNC Connection Profiles and Dynamic Quality and
Performance Tradeoff” on page 109.
54 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

CHAPTER 4

Using Sun Grid Engine to Start the
Sun Shared Visualization 1.1
Software

Sun Grid Engine performs resource management. Sun Shared Visualization 1.1
software extends resource management for graphics servers to allocate graphics
resources, as well as CPUs, memory, and other components. In an environment that
has multiple execution servers or multiple graphics accelerators on a host, Sun Grid
Engine (SGE) can select a suitable, lightly-loaded server to run your application. Sun
Grid Engine can also select a lightly-loaded graphics device on that server. Sun Grid
Engine software starts applications on that execution server, so you need not log in
to the server.

Job scripts can specify options to Sun Grid Engine, which simplifies the task for its
users. In an environment with heterogeneous execution servers, these options could
specify which processor types and operating systems are capable of running the
application. Additionally, the scripts can be customized for your Sun Grid Engine
environment.

Topics in this chapter include:

■ “Preparing to Use Sun Grid Engine With VirtualGL” on page 56
■ “Submitting Sun Grid Engine Graphics Jobs” on page 58
■ “Using Sun Grid Engine to Start Your Graphics Application” on page 61
■ “Submitting Sun Grid Engine TurboVNC Jobs” on page 65
55

Preparing to Use Sun Grid Engine With
VirtualGL
This section describes using the VirtualGL VGL or Sun Ray Image Transport from a
Solaris or Linux client. Do not use this mode on low-bandwidth or high-latency
networks.

You must first start the client’s X server and log in to the client before performing
procedures in this chapter.

On a Windows client, you also must install and configure Exceed. Instructions for
installing and configuring VirtualGL on Windows are in “Installation on a Windows
Client” on page 23, or the VirtualGL User’s Guide. (To access that document, see
“Related Documentation” on page xv.) Ensure that Exceed has been configured.

Determining if Your Client’s X Server Allows
Remote TCP Connections
These procedures require that your client’s X server allow remote TCP connections
(that is, into your X server from the application execution server chosen by Sun Grid
Engine).

To enhance security, some newer Linux and Solaris distributions (in particular,
Solaris 10 12/06 and later) do not by default allow TCP connections into the X
server. Such systems cannot be used as clients with these procedures, unless the
systems are reconfigured to allow X11 TCP connections. Discuss this situation with
your system administrator.

Note – If the system administrator decides to reconfigure the system, the following
must be done. On a Solaris client, as root, remove the -nolisten tcp option from
the Xserver invocation line, which is at the end of /etc/dt/config/Xservers. If
that file doesn’t exist, create it, as root, by copying /usr/dt/config/Xservers to
/etc/dt/config/Xservers and give the /etc copy write permission. See the
Xserver(1) manpage, which is under /usr/openwin/man in a Solaris installation.

If allowing remote X connections is not feasible, consider using SGE with TurboVNC
instead. See “Submitting Sun Grid Engine TurboVNC Jobs” on page 65 for
instructions on those processes.
56 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Determining if Your Client Host Can Be a Sun
Grid Engine Submit Host
The procedure for using Sun Shared Visualization 1.1 software with Sun Grid Engine
depends on whether your client is a Sun Grid Engine submit host. If so, you will
submit jobs directly from your client. If not, you will first connect to a submit host
and submit your job from there.

Sun Grid Engine Submit Host Clients

If your client is permitted to be an SGE submit host, it will need to NFS mount the
SGE installation, as described in Appendix B. This mount must enable your client to
use the same $SGE_ROOT as is used on the rest of the grid. (The default SGE_ROOT is
/gridware/sge.)

Windows Submit Hosts

Windows submit hosts are more difficult to configure successfully for Sun Grid
Engine than Solaris or Linux submit hosts. To configure a Windows host for Sun
Grid Engine currently requires:

■ Obtaining and installing Microsoft’s Services for UNIX (SFU) software, which
gives the Windows host a POSIX (UNIX-like) environment.

■ Configuring user name mapping.

■ NFS mounting from the grid’s queue master. This process is more difficult on
Windows, especially to enable qrsh, which requires set-uid permission.

These tasks require an experienced Sun Grid Engine administrator. See the current
Sun N1 Grid Engine 6.1 Installation Guide, part number 820-0697, including its
appendices.

Clients That Are Not Sun Grid Engine Submit Hosts

If your client is not an SGE submit host, you must first connect to a submit host.
This host need not be a graphics server but must be in the same grid with the
graphics servers. From there, you submit your Sun Grid Engine job. Sun Grid Engine
assigns your job to a lightly-loaded execution host (in keeping with your job’s stated
requirements). Then, if the job requested graphics, Sun Grid Engine assigns a
graphics accelerator (device or X display) to your job. When your job runs, its X
applications connect back to your client. The submit host and the graphics execution
hosts must share the same home directories and reside in the same domain.
Chapter 4 Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 57

This procedure requires that your client’s X server allow remote TCP connections,
because you don’t know which execution host SGE will select for your job. Both the
application’s X11 traffic and the VirtualGL image stream are unencrypted.

▼ To Prepare to Use VirtualGL From a Windows
Client
This section describes using VirtualGL’s VGL Image Transport from a Windows
client. Do not use this mode on low-bandwidth or high-latency networks. This mode
requires the Exceed (or Exceed 3D) X server to be installed and configured on the
Windows client.

1. Start Exceed if it isn’t already started.

Hover the mouse pointer over the Exceed taskbar icon and make a note of the
Exceed display number (for example, Exceed 0.0 Multiwindow Mode).

2. Open a new command prompt window and set the DISPLAY environment
variable.

Replace :0.0 with the Exceed display number.

If you only ever plan to use one Exceed session at a time, then you can set the
DISPLAY environment variable in your global user environment (found at Control
Panel->System->Advanced->Environment Variables).

3. Use the same command window to open a Secure Shell session into the graphics
server using vglconnect, described later.

Submitting Sun Grid Engine Graphics
Jobs
This section contains two procedures:

■ “To Submit Sun Grid Engine Graphics Jobs if Your Client Is Also a Sun Grid
Engine Submit Host” on page 59

■ “To Submit Sun Grid Engine Graphics Jobs if Your Client Is Not a Sun Grid
Engine Submit Host” on page 60

C> set DISPLAY=:0.0
58 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

▼ To Submit Sun Grid Engine Graphics Jobs if
Your Client Is Also a Sun Grid Engine Submit
Host
If your client is also a Sun Grid Engine submit host in the same grid with one or
more graphics servers, you can submit your SGE job directly from your client.
However, before doing so, you will use vglconnect -k to give the graphics
execution hosts access to your X display.

Sun Grid Engine will assign your job to a lightly-loaded execution host (in keeping
with your job’s stated requirements), and then assign a graphics accelerator (device
or X display) to your job. When your job runs, its X applications will connect back to
your client. The submit host and the graphics execution hosts must share the same
home directories and reside in the same domain.

Your client’s X server must allow remote TCP connections, because you don’t know
which execution host SGE will select for your job. Both the application’s X11 traffic
and the VirtualGL image stream are unencrypted.

1. Within any terminal window on your client, use vglconnect -k to enable a
remote X program to access your client’s X server.

■ On a Solaris or Linux client (or on a Sun Ray client, with a Solaris or Linux Sun
Ray server):

■ On a Windows client:

Note that no user or server is named on the vglconnect -k command line.

2. Within any terminal window on your client, set up the Sun Grid Engine
environment.

■ tcsh/csh users set up environment variables using:

Substitute /gridware/sge with your value for $SGE_ROOT.

client% /opt/VirtualGL/bin/vglconnect -k

C> cd /d "c:\program files\virtualgl-version-build"
C> vglconnect -k

client% source /gridware/sge/default/common/settings.csh
Chapter 4 Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 59

■ sh/bash/ksh users use the . command:

Substitute /gridware/sge with your value for $SGE_ROOT.

The qstat -f command shows you available Sun Grid Engine execution hosts,
queues, and any active Sun Grid Engine jobs. See Appendix C for more information
on Sun Grid Engine commands.

3. Within the same terminal window (with the SGE environment), submit SGE jobs
using qsub or qrsh.

See “Using Sun Grid Engine to Start Your Graphics Application” on page 61.

▼ To Submit Sun Grid Engine Graphics Jobs if
Your Client Is Not a Sun Grid Engine Submit
Host

1. Identify the submit host to which you will connect.

2. Open a new terminal window that will be dedicated to the session on this submit
host.

3. In the same terminal window, use vglconnect -x to start a session to this
submit host.

■ On a Solaris or Linux client:

■ On a Windows client:

Replace user with your user account name on the graphics server. If your account
name is the same on the current host as on the graphics server, then you can omit
the user@ portion. Replace submit-host with the hostname (or IP address) of that
submit host.

4. From within the ssh session, set up the Sun Grid Engine environment.

$. /gridware/sge/default/common/settings.sh

client% /opt/VirtualGL/bin/vglconnect -x user@submit-host

C> cd /d "c:\program files\virtualgl-version-build"
C> vglconnect -x user@submit-host
60 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

■ tcsh/csh users set up environment variables using:

Substitute /gridware/sge with your value for $SGE_ROOT.

■ sh/bash/ksh users should use the . command:

Substitute /gridware/sge with your value for $SGE_ROOT.

The qstat -f command shows you available Sun Grid Engine execution hosts,
queues, and any active Sun Grid Engine jobs. See Appendix C for more information
on Sun Grid Engine commands.

5. From within the ssh session, submit SGE jobs using qsub or qrsh.

See the next section, “Using Sun Grid Engine to Start Your Graphics Application” on
page 61.

Using Sun Grid Engine to Start Your
Graphics Application
There are two ways to use Sun Grid Engine to start your graphics application:

■ Using an application script.

Your system administrator might have prepared a script for you that submits to
Sun Grid Engine a job that executes your desired application. In this case, you can
invoke such a script.

■ Starting a graphics application using a Sun Grid Engine job script.

There are Sun Grid Engine job scripts you can submit to Sun Grid Engine that set
Sun Grid Engine options and when your job starts executing, starts your
application. Submitting such a Sun Grid Engine job script could be as simple as:

■ Using qrsh -b no:

submit_host% source /gridware/sge/default/common/settings.csh

$. /gridware/sge/default/common/settings.sh

submit_host% qrsh -b no /path/to/my-application-script
Chapter 4 Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 61

■ Or, using qsub -now y:

See “Differences in qsub and qrsh Command Options” on page 120 for
differences between these two command, and an explanation of why each needs
options to be appropriate for graphics job scripts.

Note – To run Sun Grid Engine commands without the full path, ensure that the
$SGE_ROOT is in your PATH variable value.

You can override or add additional Sun Grid Engine options, such as:

■ Ask your system administrator if the job script starts vglrun implicitly when
the script detects starting in a Sun Grid Engine graphics server environment.
(An example of a job script that does this detection is in “Example Sun Grid
Engine Job Script” on page 121. Sun Grid Engine starts the job with the
VGL_DISPLAY environment variable set. The job script uses vglrun to start
the application.)

■ If the job script does not start vglrun implicitly, an application that requires
graphics resources turns this order around. The Sun Grid Engine job starts
vglrun, and vglrun starts the application script within a VirtualGL
environment.

In general, the syntax of this startup is one of:

You might also want or need additional SGE-options (that is, qsub or qrsh
options), such as an option that specifies the architecture of the graphics server
that Sun Grid Engine selects as your execution host.

Though vglrun does not know what execution host architecture is appropriate
for your application, vglrun does know that Sun Grid Engine vglrun jobs
need graphics and need to save your DISPLAY or SSH_CLIENT environment
variable values. VGL_* environment variable values are also saved.

vglrun specifies these options for you, which simplifies the startup (as long as
you are submitting with -b n (binary no) option, which is the default for qsub
but not for qrsh).

submit_host% qsub -now y /path/to/my-application-script

submit_host% qsub -now y -l h_rt=3:0:0 /path/to/my_application_script

qsub -now y [SGE-options] /opt/VirtualGL/bin/vglrun [vglrun-options] application-name [app-options]
qrsh -b n [SGE-options] /opt/VirtualGL/bin/vglrun [vglrun-options] application-name [app-options]
62 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

The following example startup indicates that the application can run on any
Linux host:

In this case, note that Sun Grid Engine scans the vglrun script for Sun Grid
Engine options but does not scan the application script that is an argument to
vglrun.

Note – The architectures named lx24-x86 and lx24-amd64 are used on Linux 2.4
kernels and also on Linux 2.6 kernels.

Sun Grid Engine requires a full path to the job’s application or script. Sun Grid
Engine does not search your PATH. Also, the path to a job’s script must be valid on
the submit host, because Sun Grid Engine reads the script at submission time. (SGE
saves a copy of the job script with the job, and executes its copy at job execution
time.)

vglrun does use $PATH to find its argument. However, the default PATH for a Sun
Grid Engine job is very limited.

Easing Graphics Job Submission Using alias

If you do not provide job-specific qsub options, you can make a shell alias for
qsub and vglrun, such as (csh or tcsh syntax):

These aliases must be invoked with your application added at the end, such as:

If a graphics job script does not start vglrun implicitly and you do not start vglrun
manually, the graphics application will attempt to use the GLX (OpenGL for X)
remote graphics technique described in “Remote X Server Graphics” on page 3. This
attempt will be successful if $DISPLAY directs the application to your client’s X
server and if your client’s X server supports the GLX graphics extension. Even in
this case, GLX can be far slower than VirtualGL, especially for large graphics
models.

submit_host% qsub -now y -arch "lx24-*" /opt/VirtualGL/bin/vglrun /path/to/my_application

submit_host% alias qrsh_vgl ’qrsh -b no /opt/VirtualGL/bin/vglrun’
submit_host% alias qsub_vgl ’qsub -now y /opt/VirtualGL/bin/vglrun’

submit_host% qrsh_vgl /path/to/my-application my-option
Chapter 4 Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 63

Graphics Job Submission Without a Job Script
If it is necessary to submit a job without any job script (that is, neither using an
application-specific job script nor the vglrun generic job script), then you must
specify all the required SGE-options on the command line. The options probably
include:

You might also wish to specify other options, such as:

If you regularly use other VGL_ environment variables, you might want their values
also saved with the job.

The following is an example of a raw job submission:

This job submission is sufficient to allocate a graphics resource, but vglrun must
still be run for any graphics rendering to be directed to that graphics resource. You
can run vgerun later if fun_application attempts to invoke
true_application. The user could create a script named true_application
that actually invokes the real true_application under control of VirtualGL:

SGE Option Meaning and Purpose

-l gfx=1 Need 1 graphics resource. May be comma-separated list of resources.

-l arch=value Specify required architecture (operating system and processor) value

-N JobName Job is named JobName. (Job output files start with the JobName).

-v DISPLAY Save current DISPLAY environment variable value with the job.
Environment variable names may be a comma-separated list.

-v SSH_CLIENT Save current SSH_CLIENT environment variable value with the job.
(When SSH_CLIENT is set but VGL_CLIENT is not set, VirtualGL will
determine the actual client from the SSH_CLIENT value.)

SGE Option Meaning and Purpose

-j y “Join Yes” (qsub only): Joins standard error into output file.

-v VGL_CLIENT Saves current VGL_CLIENT environment variable value with the job.

-v VGL_GAMMA Saves current VGL_GAMMA environment variable value with the job.

-q queueName Requires SGE queue queueName.

submit_host% qsub -now y -l gfx=1,arch=lx24-amd64 -N fun -v DISPLAY,SSH_CLIENT \
fun_application

/opt/VirtualGL/bin/vglrun /path/to/true-application
64 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Submitting Sun Grid Engine TurboVNC
Jobs
Using Sun Grid Engine simplifies the process of running your application within a
TurboVNC session that is hosted on the graphics server. To run your application,
perform these five procedures:

1. Set the TurboVNC password using vncpasswd (once).

See “To Select a TurboVNC Password” on page 66..

2. Use Sun Grid Engine to perform these actions on your behalf:

a. Select the graphics server.

b. Select the graphics accelerator device.

c. Start a TurboVNC session on the graphics server.

See “To Start the TurboVNC Server Session” on page 66.

3. Start a TurboVNC viewer on your client (host). Additional viewers can be started
by collaborators. This step is dependent on which TurboVNC viewer you use:

■ The Java based TurboVNC viewer software, which runs within a web browser
on the client (simple).

■ The dedicated vncviewer client software component (better-performing).

See “To Connect a TurboVNC Viewer to Your RUN.vncserver Session” on
page 67.

4. Start your application within the TurboVNC session on the graphics server.
Invoke the application using vglrun, so the application is under the control of
VirtualGL.

See “To Start a Graphics Application Within a TurboVNC Session” on page 68.

5. Eventually, terminate the TurboVNC server session (and all clients).

See “To Terminate the RUN.vncserver Session” on page 69.

The following five sections detail these procedures, which identify differences
specific to each TurboVNC viewer.
Chapter 4 Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 65

▼ To Select a TurboVNC Password
Before running the TurboVNC server for the first time, select a TurboVNC password.
This password must differ from your login password.

● Start vncpasswd:

If /opt/TurboVNC/bin is in your $PATH, then you can start vncpasswd. The view-
only password is an alternate password to be given to a collaborator you wish to
enable to join your TurboVNC session. The collaborator can only view your session,
not move the mouse, nor enter keyboard or mouse events. The TurboVNC password
(and any view-only password) is used by all sessions started by this user using the
same $HOME directory.

You can change the password before any session.

▼ To Start the TurboVNC Server Session
The RUN.vncserver script saves the TurboVNC server connection information in
files located in your $HOME directory. The script can only be used if the $HOME
directory on the execution host is readable by the client host and only if these $HOME
directories are the same. For example, the directories are NFS mounted. Consider
that the root user has a different $HOME on each host and should not attempt to use
the RUN.vncserver script.

client% /opt/TurboVNC/bin/vncpasswd
Using password file /home/susieq/.vnc/passwd
Password:
Verify:
Would you like to enter a view-only password (y/n)? n
66 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

● Submit a job to Sun Grid Engine that starts the TurboVNC server.

A script for this purpose is part of the Sun Shared Visualization 1.1 server
installation.

Your grid can have a different script for this purpose, specific to your environment.
You might also want additional qsub options, such as to specify the architecture of
the graphics server Sun Grid Engine selects as your execution host. The
RUN.vncserver script contains options for Sun Grid Engine to require a graphics
device.

The output (and any errors) from the RUN.vncserver script is appended to the file
$HOME/vncserver.log. If your personal configuration files, such as
$HOME/.profile or $HOME/.cshrc do not override the $PATH (or csh $path)
established by the RUN.vncserver script, then vglrun (used to start a graphics
application) is in your $PATH. (Design your configuration files to add paths to the
$PATH that the files receive, and avoid replacing any path in $PATH.)

▼ To Connect a TurboVNC Viewer to Your
RUN.vncserver Session
This procedures depends on whether your TurboVNC viewer is WebVNC or
vncviewer. Either viewer works, as long as the graphics server and the client host
share the same $HOME directory. vncviewer should perform significantly better.

● Take one of the following actions:

■ Connect a web browser to your TurboVNC session started with the
RUN.vncserver script.

The RUN.vncserver script creates files in your $HOME directory starting with
vnc_. The file $HOME/vnc_url should redirect your browser to the execution
server and port number for your TurboVNC session. If your web browser
expands $HOME, you could simply enter (or select a bookmark for)
$HOME/vnc_url or file://$HOME/vnc_url. If neither of these methods work,
you can expand $HOME yourself and type file:// and your home directory
followed by /vnc_url (for example, file:///home/susieq/vnc_url). This
action redirects your browser to the URL contained in your vnc_url file.

client% qsub -now y $SGE_ROOT/graphics/RUN.vncserver
Chapter 4 Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 67

Note – The $HOME that contains the TurboVNC files is the $HOME on the execution
host. This technique is convenient if the $HOME that contains the TurboVNC files is
the same place as $HOME on the clients.

You can also view your $HOME/vnc_url file and use your browser to view the
URL contained in that file (for example, http://my_server:5802).

The web page prompts you for the TurboVNC password and then enables you to
view the TurboVNC session.

■ Connect a TurboVNC viewer to your TurboVNC session started with the
RUN.vncserver script.

When you use the RUN.vncserver Sun Grid Engine job script to start your
TurboVNC server, the script saves the graphics server name and port number in
the file $HOME/vnc_server in a format useful to the TurboVNC viewer. You can
start the TurboVNC viewer on your client (host) by appending
‘cat $HOME/vnc_server‘ as an option to your vncviewer starting:

You can make a shell alias for this command.

Within this TurboVNC X session, you can create multiple terminals (shell windows)
and start graphics applications. See “To Start a Graphics Application Within a
TurboVNC Session” on page 68.

▼ To Start a Graphics Application Within a
TurboVNC Session

● Follow these guidelines when starting a graphics application.

Within the TurboVNC session, you might type commands to the graphics server’s
shell windows normally. However, when you are ready to run a graphics
application, you must start VirtualGL’s vglrun command manually. vglrun
interposes between the application and the GLX library so that vglrun can read

client% /opt/TurboVNC/bin/vncviewer ‘cat $HOME/vnc_server‘
68 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

back completed images from the graphics accelerator and pass the images to the
TurboVNC server. The vglrun command can be in your $PATH. Otherwise, you
need to use a full path to the vglrun command.

VirtualGL avoids compressing the graphics images VirtualGL gives to the
TurboVNC server, because the TurboVNC server is on the same host and does not
know how to decompress images. TurboVNC compresses images it sends to its
viewer. Example startup from within a terminal in the TurboVNC session:

That simple startup is sufficient when the RUN.vncserver job script was used to
start the TurboVNC server, since the script sets VGL_ environment variables into
your environment.

In this second example, vglrun is not in the $PATH. The example uses an option to
disable “spoiling”.

If you attempt to run an OpenGL application from within your TurboVNC session
without remembering to use vglrun (but with $DISPLAY directing the application
to your TurboVNC session), you might get an error message such as:

▼ To Terminate the RUN.vncserver Session
You cannot just exit the viewer (that is, quit your web browser, leave the TurboVNC
page, or exit the vglviewer) because the TurboVNC server continues. After you
have saved your work, you must cause the TurboVNC session and all TurboVNC
foreground processes to exit.

● Take one of the following actions:

■ Use the TurboVNC session’s window manager logout procedure. (This is the
simpler method.)

my_server% vglrun myprogram

my_server% /opt/VirtualGL/bin/vglrun -spoil myprogram

Xlib: extension "GLX" missing on display "myserver:1.0"
Chapter 4 Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software 69

■ From within the TurboVNC session or from any session to the same graphics
server, issue a kill command to the graphics server host. The command must
include the TurboVNC session’s X display number, which RUN.vncserver saved
in $HOME/vnc_displayname:

When the TurboVNC server exits, vglviewer exits, but a web browser viewer
prompts for a session password.

To list the X display numbers and process IDs of all TurboVNC server sessions that
are currently running under your user account on this machine, type:

my_server% /opt/TurboVNC/bin/vncserver -kill ‘cat $HOME/vnc_displayname‘

my_server% /opt/TurboVNC/bin/vncserver -list
70 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

CHAPTER 5

Advance Reservations

Advance Reservation (AR) is a feature of some queuing software systems but not yet
present in Sun Grid Engine release 6.1. (If you are using a later release of Sun Grid
Engine, check whether that version includes an Advance Reservation feature that
can be used with Sun Shared Visualization software.) See the Sun Shared Visualization
1.1 Release Notes for more information.

Topics discussed in this chapter include:

■ “Advance Reservation Overview” on page 71
■ “Using the Advance Reservation Feature” on page 72
■ “Submitting a Job to an Advance Reservation” on page 77

Advance Reservation Overview
The Advance Reservation requirement is to schedule compute and visualization
resources at a time when the computer resources and the persons to use the
resources are both available. The Advance Reservation server makes this possible.
Reservations must not be scheduled to conflict with each other (by oversubscribing
available resources), nor to conflict with other Sun Grid Engine uses of the same
resources.

A user can reserve specified resources at a given time, for a given duration. Once
confirmed, the resources are available to that user’s Sun Grid Engine jobs during
that given reservation period. Jobs intended to run during the reservation period can
be submitted to Sun Grid Engine (as with the Sun Grid Engine qsub command)
right after the reservation is confirmed, or anytime before the end of the reserved
period.
71

Using the Advance Reservation Feature
To start the AR client, use the bin/runar script with either the Reserve (for
command line) or ReserveGUI (for GUI) argument:

To simplify operations, you can create an alias containing the complete path to the
runar script in a single command. For example, the following command creates an
alias called argui that starts an AR GUI client:

Reserve AR Command-Line Client
The initial AR client is a command-line interface that connects with the AR server
and handle reservations for the execution host. Any Sun Grid Engine user can run
the AR client.

▼ To Start the AR Client

● Type:

The following table describes some options for the runar Reserve command:

client% $SGE_ROOT/ar/bin/runar [arguments]

client% alias argui ’$SGE_ROOT/ar/bin/runar ReserveGUI’

client% $SGE_ROOT/ar/bin/runar Reserve [options]...

TABLE 5-1 runar Reserve Options

Option Description

-help Prints a description of the command-line options and formats.

-serverHost ARserver Name of host that is running the Advance Reservation server
software. The default serverHost is configured by the Advance
Reservation server administrator.

-host execHost
-hostname execHost

The execution host on which you want your reservation. Default
is the first execution host configured on this AR server.
72 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

For example:

In this example, there is a reservation for 7:30 am on December 25, with a duration
of one hour and 30 minutes. The resources required are one graphics resource and
one slot.

Note – slots must be plural, even if the value is 1.

If successful, the command prints a Confirmed reservation, and issues a key or
queue name. For example, queue=shefali1163187511986. The queue name is
very important, as it is the handle used to submit jobs to the reservation’s queue.

-a mmddHHMM Sets the reservation start date and time in the form of
mmddHHMM (2-digit month, date, hour, and minute).

-duration HH:MM Sets the reservation duration in the form of hours and minutes.

-l resourceList Sets the reservation’s resource list. Multiple resources can be
comma-separated.

-M EmailAddress Introduces your email address. Mail will be sent if the
reservation is confirmed. See the -m option.

-m specifier [minutes] Specifies when email is sent to the address given by the -M
option, using a string made of any of these characters:
• r minutes – A number of minutes before the beginning of the

reservation. The number of minutes follows the specifier
string.

• b – at the beginning of the reservation
• e – at the end of the reservation
• a – if the reservation is aborted
Example: -M myname@myhost -m ra 30
This combination of options reminds 30 minutes before the
reservation and also if the reservation is aborted.

-N Name Name of reservation or project.

-listreservations Lists all reservations for the user issuing the command.

-deletereservation Deletes the key or queue for the reservation.

-listresources Lists all resources that are requestable on any host.

runar Reserve -a 12250730 -duration 1:30:0 -l graphics=1,slots=1

TABLE 5-1 runar Reserve Options (Continued)

Option Description
Chapter 5 Advance Reservations 73

Reserve GUI Client

▼ To Start the AR GUI Client

● Type:

No options are normally required. The following GUI is displayed.

client% $SGE_ROOT/ar/bin/runar ReserveGUI [options]...
74 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

The New tab enables scheduling of a new reservation. TABLE 5-2 describes the
purpose of each field under the New tab.

▼ To See Pending Reservations

1. Click on the List/Delete tab.

2. Type the user name where prompted, if not already provided.

Otherwise, reservations for all users will be displayed

TABLE 5-2 Field Descriptions

Field Description

Connection: Server
Name

Host running the AR server, a name is normally obtained from
the server’s AR configuration file.

Reservation Title A name for the particular reservation.

Date Date for the reservation to start.

Start Time Time at which the reservation starts.

Duration The length of the reservation, in hours and minutes.

Hostname The name of the execution host on which you want the
reservation.

Resources Sun Grid Engine resources to reserve.

Reservation Queue Upon successful reservation submission and approval, this field
has the assigned reservation queue name. This name is needed to
submit jobs that use the reserved resources.

Email Address Optional email address where a confirmation email can be sent.
The mail message also contains the reservation’s queue name.

Send Email Specifies when email messages will be sent:
• When the reservation is confirmed.
• At the beginning of the reservation.
• At the end of the reservation’s duration.
• If the reservation is deleted.
• A number of minutes before the reservation starts.
Chapter 5 Advance Reservations 75

.

TABLE 5-3 describes the headings under the List/Delete tab.

TABLE 5-3 Advance Reservation List Heading Descriptions

Heading Description

Hostname The name of the reserved execution host.

Queue Name The name that identifies the reservation and is needed to submit jobs that
use the reserved resources.
You can copy the queue name to the clipboard for pasting into another
window or command line, such as when submitting a job to the
reservation’s queue.

Date Date for the reservation to start.

Time Time at which the reservation starts.

Duration The length of the reservation, in hours, minutes, and seconds.

Resources Sun Grid Engine resources to reserved.

User The name of the user who requested the reservation.

State Normally one of these values: QueueMade, (resources) Reserved, Started,
Finished, or (resources) Returned.
76 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

▼ To Delete a Reservation

1. Select the respective queue name from the list.

2. Click the Delete Reservation button.

Submitting a Job to an Advance
Reservation
One or more jobs can be submitted to an Advance Reservation queue, using the
reservation’s queue name. You can copy the queue name from a reservation
confirmation (or from the list of reservations) and paste the name into the command
line. For example:

If a reservation has only the default one slot, only one job can run at a time on that
queue. However, additional jobs can be enqueued (without -now set to y).

When the reservation period (start time + duration) ends, any running job on the
reservation’s queue is stopped. A Sun Grid Engine administrator can alter the job to
continue or to use a different queue. The administrator can configure a period after
the reservation’s finish time (default: 12 hours), which determines when the queue is
deleted. Any job remaining on the queue after that time is killed.

qsub -q shefali1163187511986 -l graphics=1 my_gfx_script
Chapter 5 Advance Reservations 77

78 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

APPENDIX A

VirtualGL Reference

This appendix provides information about VirtualGL options and environment
variables that are most pertinent to the Sun Shared Visualization 1.1 software. There
is also a summary of the VirtualGL GUI. Topics include:

■ “Common vglconnect Scenarios” on page 80

■ “Common vglrun Scenarios” on page 81

■ “VirtualGL Options and Environment Variables” on page 84, which includes:

■ vglrun options
■ “VirtualGL GUI for Quality and Performance Tradeoff” on page 91
■ “vglclient options” on page 95

■ “Advanced OpenGL Features” on page 95

■ “Troubleshooting Common Errors” on page 98
79

Common vglconnect Scenarios
TABLE A-2 describes different scenarios for invoking vglconnect, the command to
run the scenario, and respective comments.

On Solaris and Linux hosts, if /opt/VirtualGL/bin is not in your path, you will
have to type the full path:

On a Windows client, precede vglconnect commands with:

TABLE A-1 Common vglconnect Scenarios

Scenario Command Comment

VGL Image
Transport with
X11 Forwarding

vglconnect user@graphics-server • Starts vglclient (if it isn’t running)
• Opens ssh session to graphics-server

with X tunnel.

X11 Forwarding,
ssh-Encrypted
VGL Image
Transport

vglconnect -s user@graphics-server ssh tunnel for VGL traffic can be useful
through restrictive firewalls, and can
create multilevel tunnels. You will
probably be prompted twice for your
password (on graphics-server).

Direct X11
Connection

vglconnect -x user@graphics-server client host must allow remote (TCP) X
connections.

From a Sun Ray vglconnect is not used, use ssh -X to
contact a remote graphics server.

See “Using VirtualGL From a Sun Ray
Client” on page 32. vglclient is not
needed when using the Sun Ray Image
Transport.

Using VirtualGL
with TurboVNC

vglconnect is not used, use ssh or putty. See “Manually Using TurboVNC” on
page 40. vglclient is not normally
needed when using VNC.

After vglclient
-kill, add the
-force option to
vglconnect.

vglconnect -force user@graphics-server This scenario forces vglconnect to start
a vglclient, even if an earlier
vglclient did not exit cleanly.

/opt/VirtualGL/bin/vglconnect

C> cd /d "c:\program files\virtualgl-version-build"
80 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Common vglrun Scenarios
TABLE A-2 describes different scenarios for vglrun, the command to run the
scenario, and respective comments. The program in the Command column can be
either an application executable or a script; $PATH is searched if a pathname is not
specified.

A more thorough explanation of vglrun options and the corresponding
environment variables is provided in “VirtualGL Options and Environment
Variables” on page 84.

TABLE A-2 Common vglrun Scenarios

Scenario Command Comment

Remotely display a graphics
application

vglrun Uses the default image transport.

In VGL Image Transport,
enable SSL encryption of the
images that are sent to
vglclient

vglrun +s program This option has no effect with other image
transports. The SSL port (default is 4243 for
the client’s first display) must be allowed
through the client’s firewall.

VGL Image Transport over
Gigabit Networks

vglrun -c rgb program Disable image compression. This option
decreases server CPU consumption but
drastically increases network bandwidth
consumption.

Turn off frame spoiling vglrun -sp program This option is necessary to obtain accurate
results from benchmark applications. Frame
spoiling should be left on when running
interactive applications.

In VGL Image Transport, set
the JPEG quality to the value q

vglrun -q q program Where q is a number between 1 and 100
(default is 95). This option has no effect in
any other mode.

In VGL Image Transport, set
the JPEG chrominance
subsampling to s

vglrun -samp s program Where s is one of the values from TABLE A-3.
1x is the default for VirtualGL Image
Transport. 16x is the default for Sun Ray
Image Transport.
Appendix A VirtualGL Reference 81

Chrominance Subsampling
When an image is compressed using JPEG or using Sun Ray DPCM compression,
each pixel in the image is first converted from RGB (Red/Green/Blue) to YUV. A
YUV pixel has three values that specify the overall brightness of the pixel (Y, or
luminance) and the overall color of the pixel (U and V, or chrominance.)

Since the human eye is less sensitive to changes in color than to changes in
brightness, the chrominance components for some of the pixels can be discarded
without much noticeable loss in image quality. This technique, called chrominance
subsampling, significantly reduces the size of the compressed image.

TABLE A-3 introduces available chrominance subsampling choices. For example, 8x
means to discard the chrominance components for 3 out of every 4 pixels
horizontally and half the pixels vertically. (This option is also known as 4:1:0 or 4:2
subsampling.)

Narrow, aliased lines and other sharp features on a black background tend to
produce very noticeable artifacts when chrominance subsampling is enabled. The
gray option is useful when running applications (such as medical visualization
applications) that are already generating grayscale images.

TABLE A-3 Chrominance Subsampling Characteristics

-samp
Option Subsampling Performance Image Bandwidth Compression Artifacts

1x 4:4:4
(no subsampling)

Slowest Most None

2x 4:2:2 or 2:1
(discard 1/2 in
X)

Medium slow Medium high
(about 20-25%
less than 1x)

Some

4x 4:2:0 or 2:2
(discard 1/2 in X
and Y)

Medium Medium
(about 35-40%
less than 1x)

More

8x 4:1:0 or 4:2
(discard 3/4 in X
and 1/2 in Y)

Medium fast Medium low Even more (available only
with Sun Ray DPCM
compression)

16x 4:4 (discard 3/4
in X and Y)

Fastest Low Still more (available only
with Sun Ray DPCM
compression)

gray Discard all
chrominance

Fastest Least Available only with JPEG
compression
82 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Gamma Correction
Gamma refers to the relationship between the intensity of light that your computer’s
monitor is instructed to display, and the intensity that it actually displays. The curve
is an exponential curve of the form Y = XG, where X is between 0 and 1. G is called
the gamma of the monitor. PC monitors and TVs usually have a gamma of around
2.2.

Some of the mathematics involved in 3D rendering assumes a linear gamma (G =
1.0). Therefore, 3D applications will not display with mathematical correctness
unless the pixels are gamma corrected to counterbalance the nonlinear response curve
of the monitor. But some systems do not have any form of built-in gamma
correction. Thus, the applications developed for such systems have usually been
designed to display properly without gamma correction. Gamma correction involves
passing pixels through a function of the form X = W1/G, where G is the gamma
correction factor and should be equal to the gamma of the monitor. So the final output
is Y = XG = (W1/G)G = W. This equation describes a linear relationship between the
intensity of the pixels drawn by the application and the intensity of the pixels
displayed by the monitor.

Default Gamma Correction Behavior

By default, VirtualGL attempts to provide the gamma correction environment that
would have been used running locally on the server.

■ When an OpenGL application is running on Solaris SPARC®, by default
VirtualGL attempts to gamma correct the images. If a Solaris SPARC client has a
gamma-corrected visual (the gamma-correction factor for this is controlled on the
client with fbconfig), then a gamma-corrected visual is used. Otherwise (that is,
if a Solaris SPARC client doesn’t have a gamma-corrected visual or if the client
isn’t Solaris SPARC), the images are gamma-corrected by VirtualGL software with
a factor of 2.2.

■ When an OpenGL application is running on Solaris x86 or Linux, by default
VirtualGL does no gamma correction. There could still be gamma correction on
these platforms if the entire screen is gamma corrected with device driver
controls.

VirtualGL’s VGL_GAMMA environment variable, along with options -g, +g, and -
gamma, control its gamma correction. See their entries in TABLE A-4.
Appendix A VirtualGL Reference 83

VirtualGL Options and Environment
Variables
vglrun is located:

■ On a Solaris host at /opt/VirtualGL/bin/ and at /opt/SUNWvgl/bin

■ On a Linux host at /opt/VirtualGL/bin/ and at /usr/bin

The syntax of vglrun is:

vglrun [vglrun-options] [--] OpenGL-application [OpenGL-app-arguments]

That is, any options for vglrun appear between vglrun and the name of the
OpenGL application to start. If necessary, you can enter two hyphens to manually
signify the end of vglrun options. Any options to the OpenGL application appear at
the end of the line.

A more sophisticated example of the vglrun starting (which assumes vglrun is in
your $PATH) is:

The most important vglrun option is controlled with -d (or with the VGL_DISPLAY
environment variable). The value for the -d option is either an X display, or (on a
Solaris SPARC host) the string glp or a GLP device name, such as /dev/fbs/kfb0,
as seen in the example. When an X display is used, the display should be on the
graphics server with 3D graphics acceleration. For example:

If your graphics server has only one graphics device, start an X server on the device
and enable the X server to you (or to everyone on the graphics server), as described
in the "Configuration and Information" section of the Sun Shared Visualization 1.1
Software Server Administration Guide. After that, the default X display (:0) is fine.
Ask your system administrator if you need to provide the display or device to
vglrun.

Sun Grid Engine can set VGL_DISPLAY for you, when running a job that requests
graphics resources. On a graphics server with only one graphics accelerator,
VGL_DISPLAY can be set to the empty string ““. The string is sufficient to cause
VirtualGL to use the default X display (:0.0).

my_server% vglrun -g -d /dev/fbs/kfb0 my-program my-program-option my-program-argument

my_server% vglrun -g -d :1.0 my-program my-program-option my-program-argument
84 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

TABLE A-4, TABLE A-5, and TABLE A-6 list the VGL_ environment variables and
equivalent vglrun options associated with general operation, Sun Ray Image
Transport, and VGL Image Transport, respectively.

TABLE A-4 General VGL_ Environment Variables and vglrun Options

Environment
Variable
Name and Values

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value

VGL_CLIENT =
client:display

-client
client:display

The host name, IP address, or X display where
VirtualGL should send the VGL Image stream.

VGL Image Transport uses a dedicated TCP/IP
connection to transmit compressed images of an
application’s OpenGL rendering area from the
application server to the client display. Thus, the
server needs to know on which machine the VirtualGL
client software is running, and which X display on that
machine is used to draw the application’s windows
and other 2D GUI elements. The server’s SSH_CLIENT
or DISPLAY environment variable normally supplies
this information to VirtualGL

But if necessary, set VGL_CLIENT to the display where
the application’s GUI ends up. When using the VGL
Image Transport, the display is the host name or IP
address of the machine on which vglclient is
running. When using the Sun Ray Image Transport,
this display is the host name or IP address of the Sun
Ray server. For example (using ksh/bash syntax):
export VGL_CLIENT=my_client_machine:0.0

Set
automatically
by use of
vlgconnect
or ssh (as
instructed in
Chapter 3), or
read from the
DISPLAY
environment
variable
(otherwise).
Appendix A VirtualGL Reference 85

VGL_COMPRESS=proxy

VGL_COMPRESS=jpeg

VGL_COMPRESS=rgb

VGL_COMPRESS=sr

VGL_COMPRESS=srrgb

-c [proxy |
jpeg | rgb
| sr |
srrgb]

Selects image transport and image compression type.
Each value selects a specific image transport:

• proxy selects X11 Image Transport
• jpeg or rgb selects VGL Image Transport
• sr or srrgb selects Sun Ray Image Transport

proxy = Sends images uncompressed using the X11
Image Transport. This option is useful when
displaying to a local X server or X proxy such as
TurboVNC.

jpeg = Compresses images using JPEG and sends
using the VGL Image Transport. This option is used
with vglclient when displaying to a remote X
server.

rgb = Encodes images as uncompressed RGB and
sends using the VGL Image Transport. This option is
useful when displaying to a remote X server or X
proxy across a very fast network.

sr = Compresses images using the Sun Ray default
compression method (DPCM) and sends using the Sun
Ray Image Transport. This option requires that the
proprietary Sun Ray plug-in be installed on the
VirtualGL server.

srrgb = Encodes images as uncompressed RGB and
sends using the Sun Ray Image Transport. This option
requires that the proprietary Sun Ray plug-in be
installed on the VirtualGL server.

If the X server is a Sun Ray server and the Sun Ray
plug-in is installed on the VirtualGL server, then VGL
will default to using sr compression. VGL will fall
back to using proxy compression if, for any given
frame, it is unable to send the frame using the Sun Ray
Image Transport. This situation could occur if, for
example, the Sun Ray client is on a network that is not
visible to the VirtualGL server.

If the X server
is a Sun Ray
server and the
Sun Ray plug-
in is installed
on the
VirtualGL
server, use sr
(if possible)
and proxy
(otherwise).

If the X server
is not a Sun
Ray server, use
proxy if
DISPLAY
begins with :
or with
unix:(otherwi
se, use jpeg).

TABLE A-4 General VGL_ Environment Variables and vglrun Options (Continued)

Environment
Variable
Name and Values

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value
86 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

VGL_DISPLAY -d display-or-
GLP-device

The X display or GLP device to use for 3D rendering.

You may set VGL_DISPLAY to the name of any
graphics-accelerated X display (such as :1.0). This
functionality could be used, for instance, to support
many application instances on a multipipe graphics
server.

GLP mode (Solaris SPARC only) –
Setting this option to GLP or glp enables GLP mode
and selects the first available GLP device for
rendering. You can also set this option to the pathname
of a specific GLP device (for example,
/dev/fbs/jfb0 or /dev/fbs/kfb0). GLP is a
special feature of the Sun SPARC OpenGL library that
enables an application to render into Pbuffers on a jfb
or kfb graphics card, even if there is no X server
running on that graphics card.

Sun Grid Engine can set VGL_DISPLAY for you, when
running a job that requests graphics resources. On a
host with only one graphics device, Sun Grid Engine
might set VGL_DISPLAY to the null string (““).
Consequently, the default X server (:0.0) is used.

:0

VGL_FPS=f -fps f Limits the client-server frame rate to f frames per
second, where f is a floating point number > 0.0. This
option can be used, for instance, as a crude way to
control network bandwidth or CPU usage in multiuser
environments where those resources are constrained.

This option prevents the VGL and X11 Image Transports
from sending frames at a rate faster than the specified
limit. If frame spoiling is disabled, then this option
effectively limits the server’s graphics rendering frame
rate as well.

No limit

VGL_GAMMA=1 +g Enables gamma correction with default settings.

This option enables gamma correction using the best
available method. The client’s gamma-corrected X
visual is used, if available. Otherwise, VirtualGL
performs gamma correction internally using a default
gamma correction factor of 2.22. This option emulates
the default behavior of OpenGL applications running
locally on SPARC systems.

Defaults on
Solaris SPARC,
VGL_GAMMA=
1:
gamma
correction
enabled,
factor=2.2

TABLE A-4 General VGL_ Environment Variables and vglrun Options (Continued)

Environment
Variable
Name and Values

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value
Appendix A VirtualGL Reference 87

VGL_GAMMA=0 -g Disables gamma correction.

This option tells VGL not to use gamma-corrected
visuals, even if they are available on the X server, and
disables VGL’s internal gamma correction system as
well. This option emulates the default behavior of
OpenGL applications running locally on Linux or
Solaris x86 machines.

Defaults on
Solaris x86 and
Linux,
VGL_GAMMA=0:

gamma
correction
disabled,
factor=1.0.

VGL_GAMMA=factor -gamma factor Enables VGL’s internal gamma-correction system with
the gamma-correction factor specified.

If VGL_GAMMA is set to an arbitrary floating-point value
(a decimal point should always be used), then
VirtualGL performs gamma correction internally using
the specified value as the gamma-correction factor. You
can also specify a negative value to apply a de-gamma
function. Specifying a gamma correction factor of G
(where G < 0) is equivalent to specifying a gamma
correction factor of -1/G.

VGL_GUI Specifies key sequence to pop-up VirtualGL’s dynamic
control GUI. See “VirtualGL GUI for Quality and
Performance Tradeoff” on page 91.

Shift-Ctrl-F9

VGL_INTERFRAME=0

VGL_INTERFRAME=1

Disables and enables interframe comparison.
Interframe comparison only sends tiles of the image
that have changes since the previous frame. This
option has no effect in X11 Image Transport.

Comparison
enabled.

VGL_LOG Redirects the console output from VirtualGL to a log
file.

Setting this environment to the pathname of a log file
on the VirtualGL server causes the VirtualGL faker to
redirect all of its messages to the specified log file
rather than to stderr. Output content includes any
profiling and trace output.

Print all
messages to
stderr.

VGL_PROFILE=0

VGL_PROFILE=1

-profile

+profile

Disables and enables profiling output.

If enabled, this option causes the VirtualGL faker to
continuously benchmark itself and periodically print
out the throughput of reading back, compressing, and
sending pixels to the client. See also VGL_SPOIL.

Profiling
disabled.

TABLE A-4 General VGL_ Environment Variables and vglrun Options (Continued)

Environment
Variable
Name and Values

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value
88 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

VGL_NPROCS=n -np n Selects the number of CPUs to use for multithreaded
compression.

The VGL Image Transport can divide the task of
compressing each frame among multiple server CPUs.
This behavior might speed up the overall throughput
in rare circumstances where the server CPUs are
significantly slower than the client CPUs.

VirtualGL will not allow more than four processors
total to be used for compression. Nor will VirtualGL
allow you to set this parameter to a value greater than
the number of processors in the system.

1

VGL_SPOIL=0

VGL_SPOIL=1

-spoil

+spoil

Disables and enables frame spoiling.

By default, VirtualGL drops frames so as not to slow
down the rendering rate of the server’s graphics
engine. This functionality should produce the best
results with interactive applications.

However, turn off frame spoiling when running
benchmarks or other noninteractive applications.
Turning off frame spoiling forces one frame to be read
back and sent on each buffer swap, thus enabling
benchmarks to accurately measure the frame rate of
the entire VirtualGL pipeline. Disabling frame spoiling
also prevents noninteractive applications from wasting
graphics resources by rendering frames that are never
seen. With frame spoiling turned off, the rendering
pipeline behaves as if the pipeline’s fill-rate is limited
to about 30 or 40 Megapixels/second, the maximum
throughput of the VirtualGL system on current CPUs.

Spoiling
enabled.

TABLE A-4 General VGL_ Environment Variables and vglrun Options (Continued)

Environment
Variable
Name and Values

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value
Appendix A VirtualGL Reference 89

VGL_STEREO=lef

VGL_STEREO=right

VGL_STEREO=quad

VGL_STEREO=rc

-st [left |
right |
quad | rc]

Specifies the delivery method for stereo images (when
an application renders a stereo frame).

left – Sends only the left eye buffer.
right – Sends only the right eye buffer.
quad – Attempts to use quad-buffered stereo, which
will result in a pair of images being sent to the
VirtualGL client on every frame. Quad-buffered stereo
requires the VGL Image Transport, and it also requires
that client support OpenGL and have a 3D accelerator
that supports stereo rendering. If quad-buffered stereo
is not available, either because the client or the Image
Transport does not support it, then falls back to using
anaglyphic stereo.
rc – Uses Red/Cyan (anaglyphic) stereo, even if quad-
buffered stereo is available.

quad – use
quad-buffered
stereo if
available, use
anaglyphic
stereo
otherwise.

VGL_SUBSAMP=1x

VGL_SUBSAMP=2x

VGL_SUBSAMP=4x

VGL_SUBSAMP=8x

VGL_SUBSAMP=16x

VGL_SUBSAMP=gray

-samp [1x|
2x|4x|8x|16
x|grey]

Subsamples chrominance (color) to improve
performance at the expense of quality.

1x – Full YUV color resolution (4:4:4).
2x – full resolution in Y, subsamples U and V by 2 in X
(4:4:2).
4x – Subsamples U and V by 2 in X and Y (4:2:0).
8x – Subsamples U and V by 4 in X, 2 in Y (4:1:0).
16x – Subsamples U and V by 4 in X and Y (4:4).
gray – Discards all chrominance (color) components.

All of the YUV compression uses DPCM to compress
luminance information. See TABLE A-3 on page 82.

1x (full color
resolution).

VGL_TRACE=0

VGL_TRACE=1

-tr
+tr

Disables or enables tracing.

When tracing is enabled, VirtualGL logs all calls to the
GLX and X11 functions it is intercepting. VirtualGL
also logs the arguments, return values, and execution
times for those functions. This behavior is useful when
diagnosing interaction problems between VirtualGL
and a particular OpenGL application.

Disabled.

VGL_VERBOSE=0

VGL_VERBOSE=1

-v
+v

Disables or enables verbose VirtualGL messages.

When verbose mode is enabled, VirtualGL reveals
some of its decisions, such as which code path it is
using to compress images, which type of X11 drawing
it is using, and so on. This behavior can be helpful
when diagnosing performance problems.

Disabled.

TABLE A-4 General VGL_ Environment Variables and vglrun Options (Continued)

Environment
Variable
Name and Values

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value
90 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

:

:

Passing a configuration option as an argument to vglrun effectively overrides the
environment variable setting corresponding to that configuration option.

For more information about vglrun options, start vglrun -help or consult the
VirtualGL User’s Guide. See “Related Documentation” on page xv.

VirtualGL GUI for Quality and Performance
Tradeoff
VirtualGL has a small graphical user interface (GUI) to enable you to dynamically
control the VirtualGL compression and encoding. See FIGURE A-1. This functionality
enables you to reconfigure visual quality and performance on-the-fly.

TABLE A-5 VGL_ Environment Variables and vglrun Options for Sun Ray Image Transport

Environment
Variable
Name

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value

VGL_ZOOM_X=2 Downsamples YUV an extra factor of 2 in X. Disabled.

VGL_ZOOM_Y=2 Downsamples YUV an extra factor of 2 in Y. Disabled.

VGL_PROGRESSIVE=0

VGL_PROGRESSIVE=1

-prog

+prog

Disables and enables sending of a Lossless version of
the image if a newer image is not provided. The
transmission is interrupted if a new image arrives.

Disabled.

TABLE A-6 VGL_ Environment Variables and vglrun Options for VGL Image Transport

Environment
Variable
Name and Values

vglrun
Command-Line
Override

vglrun
Option Description

Default
Value

VGL_QUAL=[1-100] -q [1-100] An integer between 1 and 100 (inclusive).

This setting enables you to specify the quality of the
JPEG compression. Lower is faster but also grainier. The
default setting should produce visually lossless
performance. 100 is still not entirely lossless. See also
VGL_PROGRESSIVE in TABLE A-4 on page 85.

95

VGL_SSL=0

VGL_SSL=1

-s
+s

Disables or enables SSL encryption (of VGL images).

Enabling this option causes the VGL Image Transport to
be tunneled through the secure socket layer (SSL).

Disabled.
Appendix A VirtualGL Reference 91

FIGURE A-1 VirtualGL’s Configuration Dialog (Showing LAN Defaults)

▼ To Start the VirtualGL GUI

● Type Control-Shift-F9 keys.

That is, hold the Control and Shift keys, and press the F9 function key. You can use
the VGL_GUI environment variable to change the key combination if, for example, an
application is already using that key sequence.

For example:

The command changes the key sequence to the Control-F9 keys for graphics
programs started with vglrun from that shell.

Using the VirtualGL GUI

You can use this dialog to adjust various image compression and display parameters
in VirtualGL. Changes are reflected immediately in the application. TABLE A-7
describes each of the setting fields for the GUI. Many of these descriptions refer to

my_server% setenv VGL_GUI CTRL-F9
92 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

static settings described in tables in “VirtualGL Options and Environment Variables”
on page 84. The GUI overrides those static settings from an environment variable or
option to vglrun.

TABLE A-7 VirtualGL GUI Field Descriptions

Field Description

Image Compression
(Transport)

Selects the image compression and transport technique.
Inappropriate choices are grayed out (for example, Sun Ray
transport choices are unavailable on other clients).
None (X11 Transport) – Equivalent to VGL_COMPRESS=proxy. This
option can be activated at any time, regardless of which transport
was active when VirtualGL started.

JPEG (VGL Transport) – Equivalent to VGL_COMPRESS=jpeg. This
option is only available if the VGL Image Transport was active when
the application started.

RGB (VGL Transport) – Equivalent to VGL_COMPRESS=rgb. This
option is only available if the VGL Image Transport was active when
the application started.

DPCM (Sun Ray Transport) – Equivalent to VGL_COMPRESS=sr.
This option is only available if the Sun Ray Image Transport was
active when the application started.

RGB (Sun Ray Transport) – Equivalent to setting VGL_COMPRESS=
srrgb. This option is only available if the Sun Ray Image Transport
was active when the application started.

Chrominance
Subsampling

Selects the color compression (quality and performance tradeoff)
when using JPEG or Sun Ray DPCM compression. This option
overrides VGL_SUBSAMP, described in TABLE A-4 on page 85 and in
TABLE A-3 on page 82.

JPEG Quality This slider enables you to set a percentage quality when using JPEG
compression. A higher percentage means better quality, at the
expense of reduced bandwidth. Changing this setting overrides
VGL_QUAL.

Send Lossless Frame
During Periods of
Inactivity

This toggle button is the equivalent of setting VGL_PROGRESSIVE.
This toggle button is active only when using Sun Ray DPCM
compression.
Appendix A VirtualGL Reference 93

Note – VirtualGL monitors the application’s X event loop to determine whenever a
particular key sequence has been pressed. If an application is not monitoring key
press events in its X event loop, then the VirtualGL configuration dialog might not
pop up at all.

Connection Profile This drop-down menu is active only if the VGL Image Transport
was active when the application started. All choices set the image
compression type to JPEG (VGL Transport). It has the following
options:
• Low Qual (Wide-Area Network) – Also sets the Chrominance

Subsampling to 4X, and sets the JPEG Image Quality to 30.
• Medium Qual – Also sets the Chrominance Subsampling to 2X,

and sets the JPEG Image Quality to 80.
• High Qual (High-Speed Network) – Also sets the Chrominance

Subsampling to 1X, and sets the JPEG Image Quality to 95. These
settings are VirtualGL’s current defaults.

Gamma Correction
Factor

This floating-point field is the equivalent of setting VGL_GAMMA. If
using a gamma-corrected visual (SPARC clients only), then this field
has no effect. Otherwise, this field enables VirtualGL’s internal
gamma-correction system with the specified gamma-correction
factor.

Frame Spoiling Toggles between frame spoiling on (enabled) or off (disabled).
Changing this setting overrides the value of VGL_SPOIL.

Interframe
Comparison

Toggles interframe comparison on and off. Changing this setting
overrides the value of VGL_INTERFRAME.

Stereographic
Rendering Method

Drop-down menu overrides the value of VGL_STEREO.

Limit
Frames/second

This floating-point field overrides VGL_FPS.

TABLE A-7 VirtualGL GUI Field Descriptions (Continued)

Field Description
94 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

vglclient options
The following table lists options honored by vglclient when using the VGL Image
Transport. Note that vglclient is normally started implicitly by vglconnect.

Advanced OpenGL Features
This section discusses VirtualGL features that support these advanced OpenGL
Features:

■ “Stereographic Rendering” on page 96 (rendering image pairs intended for left
and right eyes)

■ “Transparent Overlays” on page 98 (rendering an image on top of another
rendered image, so the top image can be easily redrawn without requiring a
redraw of the underlay)

TABLE A-8 vglclient Options for VGL Image Transport

Environment
Variable
Name and Values

vglclient
Command-
Line
Override

vglclient
Option Description

Default
Value

VGLCLIENT_DRAWMODE=
ogl | x11

-gl
-x

Specifies the method used to draw pixels into the
application window. Options use OpenGL or X11.

ogl for Solaris
SPARC systems
with 3D
accelerators,
x11 otherwise

VGLCLIENT_LISTEN=
sslonly | nossl

-sslonly
-nossl

Accepts only SSL connections or only unencrypted
connections from the VirtualGL server.

Accept both

VGL_PROFILE=0

VGL_PROFILE=1

Disables or enables profiling output.

If profiling output is enabled, then VirtualGL will
continuously benchmark itself and periodically print
out the throughput of various stages in its image
pipelines. See also VGL_SPOIL.

Disabled

VGL_VERBOSE=0

VGL_VERBOSE=1

Disables or enables verbose VirtualGL messages.

When verbose mode is enabled, VirtualGL reveals
some of its decisions, such as which code path it is
using to decompress images, which type of X11
drawing it is using, and so on. This behavior can be
helpful when diagnosing performance problems.

Disabled
Appendix A VirtualGL Reference 95

Stereographic Rendering
Stereographic rendering is a feature of OpenGL that creates separate rendering
buffers for the left and right eyes and allows the application to render a different
image into each buffer. How the stereo images are subsequently displayed depends
on the specifics of the 3D hardware and the user’s environment.

VirtualGL can support stereographic applications in two ways:

You can select a specific stereo mode by setting the VGL_STEREO environment
variable, by using the -st argument with vglrun (see TABLE A-4 on page 85), or by
using the VirtualGL GUI (see “VirtualGL GUI for Quality and Performance
Tradeoff” on page 91).

Quad-Buffered Stereo

The name quad-buffered stereo is derived from OpenGL using four buffers (left front,
right front, left back, and right back) that support stereographic rendering with
double buffering. 3D graphics cards with quad-buffered stereo capabilities typically
provide a synchronization signal that can control active stereo 3D glasses of various
types. Some 3D graphics cards support passive stereo, which displays the buffers for
the left and right eyes to different monitor outputs. The outputs might be projected
onto the same screen through polarized filters.

VirtualGL supports true quad-buffered stereo by rendering stereo images on the
server and sending image pairs across the network. The image pairs are displayed
by a 3D graphics card on the client.

Quad-Buffered Stereo Requirements

In most cases, the VirtualGL and TurboVNC clients use only 2D drawing commands,
so the client host does not required a 3D graphics card. But displaying quad-
buffered stereo images requires that the client host have a 3D graphics card. Since

Stereographic
Mode

Description Requires

Quad-Buffered
Stereo

Sends the stereo image pairs to the client
to be displayed in stereo by the client’s 3D
graphics card

Stereo-capable 3D graphics
hardware on server and
client.

Anaglyphic
Stereo

Combines each stereo image pair into a
single anaglyph that can be viewed with
widely-available red/cyan 3D glasses

Stereo-capable 3D graphics
hardware on server (3D
graphics hardware is not
needed on the client)
96 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

the 3D graphics card is only being used to display images, it does not need to be a
high-end card of that type. In most cases, the least expensive 3D graphics card that
has stereo capabilities will work fine in a VirtualGL client.

Also, the server must have a 3D graphics card that supports stereo, since this is the
only way that a stereo Pbuffer is provided to VirtualGL.

When an application tries to render something in stereo, VirtualGL will use quad-
buffered stereo rendering if all of the following characteristics are true:

■ VGL Image Transport is being used.

■ Anaglyphic stereo is not explicitly requested (for example, by VGL_STEREO, by
vglrun’s -st option, or by VirtualGL’s GUI).

■ The client supports OpenGL (Exceed 3D is required for Windows clients).

■ The client has stereo rendering capabilities.

■ The server has stereo rendering capabilties.

If any of these conditions is not true, then VirtualGL falls back to using anaglyphic
stereo (as described in “Anaglyphic Stereo” on page 97). You usually need to
explicitly enable stereo in the graphics driver configuration for both the client and
server machines. “Verifying Advanced Feature Support” on page 103 describes how
to verify that stereo visuals are available on both the client and server.

In quad-buffered mode, VirtualGL reads back both eye buffers on the server, then
sends the contents as a pair of compressed images (one for each eye) to the
VirtualGL client. The VirtualGL client then decompresses both images and draws
them as a single stereo frame to the client machine’s X display using
glDrawPixels(). Because of this process, enabling quad-buffered stereo in
VirtualGL typically decreases performance by 50 percent or more, and twice the
network bandwidth is used to maintain the same frame rate.

Anaglyphic Stereo

Anaglyphic stereo is the type of stereographic display used for old 3D movies. This
method usually relies on a set of 3D glasses consisting of red transparency film over
the left eye and cyan transparency film over the right eye. To generate a 3D
anaglyph, the red color data from the left eye buffer is combined with the green and
blue color data from the right eye buffer, enabling a single monographic image to
contain stereo data. Within the capabilities of VirtualGL, an anaglyphic image is the
same as a monographic image. Therefore, anaglyphic stereo images can be sent by
any image transport to any type of client, regardless of the client’s capabilities.

VirtualGL falls back to using anaglyphic stereo when VirtualGL detects that an
application has rendered something in stereo but quad-buffered stereo is not
available. Quad-buffered stereo might be unavailable because the client doesn’t
support it or because the image transport being used is not GL Image Transport.
Appendix A VirtualGL Reference 97

Anaglyphic stereo provides an inexpensive and simple way to view stereographic
applications in X proxies (including TurboVNC) and on clients that do not support
quad-buffered stereo. Additionally, anaglyphic stereo performs much faster than
quad-buffered stereo, since quad-buffered stereo sends twice as much data to the
client.

Transparent Overlays
Transparent overlays render an overlay image on top of an underlay rendered
image. You can easily erase or redraw the overlay image without requiring the
underlay to be redrawn. Transparent overlays have requirements and restrictions
similar to those for quad-buffered stereo. For an application to use this feature,
transparent overlay features must be provided by the client host’s 3D graphics card
and OpenGL.

When an application performs OpenGL rendering to the transparent overlay,
VirtualGL completely bypasses its own GLX faker. Instead, VIrtualGL uses indirect
OpenGL rendering to render to the transparent overlay on the client’s graphics card.
The underlay is still, as always, rendered on the server host.

Use of overlays is becoming more and more infrequent. When they are used, it is
typically only for drawing small, simple, static shapes and text. Usually it is faster to
send the overlay geometry over to the client rather than to render it as an image and
send the image.

As with stereo functions, sometimes overlays must be explicitly enabled in the client
graphics card’s configuration. Unlike stereo requirements, overlays need to be
supported and enabled only on the client machine.

Indexed color (8-bit) overlays have been tested and are known to work with
VirtualGL. Use glxinfo (see Troubleshooting below) To verify whether your client’s X
display supports overlays and if overlays are enabled, use glxinfo as described in
“To Verify Client Features” on page 104. In Exceed 3D, make sure that the Overlay
Support option is checked in the Exceed 3D and GLX applet.

Overlays do not work with X proxies, including TurboVNC. VirtualGL must be
displaying to a real X server.

Troubleshooting Common Errors
This section describes common user errors and how to avoid, detect, or recover from
the errors.
98 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

vglconnect and ssh Issues
■ In recent Solaris OS releases (such as Solaris 10), the Secure Shell daemon (sshd)

has the default of not allowing remote logins as user root. This default is
configured by the PermitRootLogin entry in the ssh daemon’s configuration
file, /etc/ssh/sshd_config. To avoid this problem, login as a user other than
root when running ssh or vglconnect (which uses ssh). Become root only
when necessary by using the su command.

VirtualGL Issues
■ If the VirtualGL Client is not started, an attempt to start an application under

VirtualGL control reports Connection refused:

This message is probably caused by using a program such as ssh to log into the
graphics server, rather than using vglconnect, which starts vglclient
implicitly. Another possible cause is that the vglclient process exited. In that
situation, a new vglclient needs to be started using the vglconnect -force
option. Check the VirtualGL client log file for possible errors.

■ If VirtualGL is not compressing images, VirtualGL can draw directly to the
client’s X server without connecting to the VirtualGL client software, but this
behavior does not perform as well. There is not an automatic fallback when
vglclient is not found. The Connection refused message also appears if the
client is a Sun Ray and the Sun Ray plug-in for VirtualGL (package SUNWvglsr)
has not been installed on the graphics server (unless no compression was
requested).

■ If the DISPLAY environment variable is not set on the graphics server host, then
an attempt to start an application under VirtualGL control reports something
similar to: XOpenDisplay: Error opening display. Or if access was not
granted properly, the application might print messages such as:

[VGL] Could not connect to VGL client. Make sure the VGL client is running and
[VGL] that either the DISPLAY or VGL_CLIENT environment variable points to
[VGL] the machine on which it is running.
[VGL] rrsocket.cpp--
[VGL] 224: Connection refused

Xlib: connection to "client:0.0" refused by server
Xlib: Client is not authorized to connect to Server
myapplication: XOpenDisplay: Error opening display.
Appendix A VirtualGL Reference 99

■ If the graphics server’s X display or GLP graphics device is not properly
configured, you do not have permission to access the display or device. VirtualGL
reports an error such as:

In this case, null indicates that the VirtualGL display or device specification was
"" (a null string, which is the VirtualGL default, meaning the graphics server’s
:0.0 display). The name of the display or device name that VirtualGL failed to
open or access is printed.

This message might be caused by one of the following configuration or usage
errors:

■ The X server running on the graphics server has not been configured to allow
access to VirtualGL users. This configuration procedure is described in Chapter
4 of the Sun Shared Visualization 1.1 Server Administration Guide.

■ The current user account is not in the vglusers group. To do this procedure,
see Chapter 4 of the Sun Shared Visualization 1.1 Server Administration Guide.

■ There is no X server running on the graphics server.

■ The graphics server is configured for use only with GLP, but vglrun was not
provided with the -d glp argument.

■ If the graphics server does not offer a true color (RGB) X visual, VirtualGL might
print:

The same error can occur if the client’s X server does not offer a 24-bit true color
(RGB) visual. Some Linux systems are configured for only 16-bit visuals. In this
case, the system must be reconfigured for 24-bit true color visuals.

Another possible reason that the application can’t open a usable visual is that the
graphics server’s 3D graphics card does not support OpenGL pixel buffers
(Pbuffers). The graphics server might not have the proper driver installed for that
3D graphics card. On Linux, you probably need to use the driver supplied by the
3D graphics card vendor instead of the driver that was included with the
operating system. For example, use the nvidia driver supplied by the 3D
graphics card vendor rather than an nv driver from another source.

■ If you neglect to start vglrun, the graphics application can use the GLX remote
graphics technique described in “Sun Shared Visualization 1.1 Introduction” on
page 1 if $DISPLAY directs the application to your client’s X server and the server
supports the GLX (OpenGL for X) graphics extension. GLX can be far slower than
VirtualGL, especially for large graphics models.

[VGL] Could not open display (null).

Error: couldn’t get an RGB, Double-buffered visual
100 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

■ When a Solaris application (such as a script) must set the user or group id when
it runs (such as with setuid and setgid), that application might generate errors
when it runs under VirtualGL. The error message might be:

This error occurs because the VirtualGL faker library is preloaded into every
executable that the script launches. When the script calls an executable that is
setuid root, Solaris refuses to load that executable. Solaris prevents an attempt to
preload a library (such as VirtualGL) that is not in a directory that Solaris
recognizes as containing only secure libraries.

One way to deal with this situation is described in Chapter 4 of the Sun Shared
Visualization 1.1 Software Server Administration Guide. In that method, the
administrator indicates to Solaris that all libraries in the VirtualGL directory are
sufficiently secure to load into applications that require setuid or setgid.

Another way to deal with this situation is to edit the application script so that the
script invokes vglrun only for executables that you want to run in the VirtualGL
environment. There are two ways to do this:

■ The -32 and -64 options of vglrun provide control for launching scripts:

Here is an example of using these options. The script calls a binary needing
setuid that is a 32-bit execuatable. However, the graphics application is a 64-
bit executable. In this situation, you can use vglrun -64 to launch the
application script. The result is that the 32-bit setuid binary will not attempt to
preload VIrtualGL’s faker library.

■ You can edit the application script (or create an alternative script) so the script
postpones use of vglrun until vglrun invokes the actual graphics application.
For example, your original script (called my_script) is as follows:

warning: /opt/SUNWvgl/lib/librrfaker.so: open failed: illegal insecure pathname

vglrun Option Description

vglrun -32 The script preloads VirtualGL only into 32-bit executables

vglrun -64 The script preloads VirtualGL only into 62-bit executables

#!/bin/sh
some_setuid_binary
some_application_binary
Appendix A VirtualGL Reference 101

Rather than running this with vglrun my_script, you can create a similar
script (called my_vgl_script) as follows:

Invoke my_vgl_script directly (that is, do not enter vglrun
my_vgl_script). The result is that this script does not attempt to preload
VirtualGL into some_setuid_binary, but will preload VirtualGL into
some_application_binary, as you wanted.

■ Error message such as the following might indicate that the ssh server daemon
running on the graphics server does not have X11 forwarding enabled:

■ Could not open display

■ Client is not authorized to connect to server

■ Connection refused by server

To configure X11 forwarding, see the Sun Shared Visualization 1.1 Server
Administration Guide.

vglclient Messages (Normally in the Log for
vglconnect)
vglclient prints messages as graphics server applications connect and disconnect.
vglconnect normally redirects vglclient‘s output to a log file whose name is
printed by vglconnect

After a connection, the vglconnect log file normally contains connection and
disconnection messages from vglclient, such as:

Depending on how the application exits, messages might be printed before the
Disconnecting message, as the Incomplete receive message shown here. If
the application was supposed to exit, these messages are of no concern. But these
messages can be used to help analyze unexpected behavior.

#!/bin/sh
some_setuid_binary
/opt/VirtualGL/bin/vglrun some_application_binary

++ Connection from 10.4.22.34.
Error receiving data from server. Server may have disconnected.
 (this is normal if the application exited.)
rrsocket.cpp-- 394: Incomplete receive
-- Disconnecting 10.4.22.34
102 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

vis_report Reporting Script
Sun Shared Visualization 1.1 software includes a reporting script,
/opt/SUNWvrpt/bin/vis_report, that is helpful in debugging product
installation, configuration, and usage problems.

Support engineers can use the script output to troubleshoot problematic behavior.
Use of the script is dependent upon the situation when the problem occurs:

■ VirtualGL – In most cases, run the script on the graphics server, ideally from the
client host that attempted to use VirtualGL and as the user attempting to use
VirtualGL.

■ TurboVNC – If you are using a TurboVNC session, run the script from within that
session. The $DISPLAY and other environment variables will be set the same as
when the problem occurred.

■ Advance Reservation – If the Advance Reservation facility for Sun Grid Engine is
involved, also run the script on the host running the Advance Reservation server,
as the owner of the $SGE_ROOT/ar/config directory.

Attach the output of the script to an email of your problem. Describe what you were
trying to do, what you expected to happen, and what actually occurred. Send the
email to your service provider or to Shared-Viz-Support@Sun.com.

Verifying Advanced Feature Support
VirtualGL includes a modified version of glxinfo that can be used to determine
whether or not the client and server have stereo, overlay, or Pseudocolor visuals
enabled.

▼ To Verify Quad-Buffered Stererographics on the
Server

● Run one of the following command sequences on the VirtualGL server to
determine whether the server has a suitable visual for stereographic rendering.

■ On a Solaris server (using GLP):

% /opt/VirtualGL/bin/glxinfo -d {glp_device} -v
Appendix A VirtualGL Reference 103

■ On a Linux or Solaris server (not using GLP):

In the output, one or more of the visuals should list stereo=1 and should list
Pbuffer as one of the Drawable Types.

▼ To Verify Client Features
● Run the following command sequence on the VirtualGL server:

Examine the output to determine whether the X display on the client has a suitable
visual to support stereographic rendering, transparent overlays, or Pseudocolor

■ In order to use stereo, one or more of the visuals should list stereo=1.

■ In order to use transparent overlays, one or more of the visuals should list
level=1, should list a Transparent Index (nontransparent visuals will say
“Opaque” instead), and should have a class of PseudoColor.

■ In order to use PseudoColor (indexed) rendering, one of the visuals should have
a class of PseudoColor.

GLX Spheres Test Program
The GLX Spheres test program (glxspheres) is found in /opt/VirtualGL/bin.
You can use this program to verify that VirtualGL has been configured and invoked
properly.

This program supports the options shown in TABLE A-9.

% xauth merge /etc/opt/VirtualGL/vgl_xauth_key
% /opt/VirtualGL/bin/glxinfo -display :0 -c -v

% /opt/VirtualGL/bin/glxinfo -v

TABLE A-9 glxspheres Options

Option Description

-h Help – Prints a summary of options and exit.

-c Uses color index rendering. The default is true color (RGB).

-c Uses color index rendering. The default is true color (RGB).
104 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

-i Interactive mode. Frames advance only when the mouse is clicked
or dragged. Continuously dragging the mouse in the window
should produce a steady frame rate. This frame rate is a reasonable
model of the frame rate that you can achieve when running
interactive applications in VirtualGL.

-m Uses immediate mode rendering. (The default is display list
rendering for maximum performance. Many applications cannot use
display lists, because the geometry they are rendering is dynamic.
So this option models how such applications might perform when
displayed remotely without VirtualGL.)

-o Uses 8-bit transparent overlays. Will change the color map
periodically.

-s Uses stereographic rendering initially. (Later, stereo can be switched
on and off in the application using VirtualGL’s Configuration dialog.
See “VirtualGL GUI for Quality and Performance Tradeoff” on
page 91.)

TABLE A-9 glxspheres Options (Continued)

Option Description
Appendix A VirtualGL Reference 105

106 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

APPENDIX B

TurboVNC Reference

This appendix provides basic reference information about TurboVNC. Topics
include:

■ “Common TurboVNC Scenarios” on page 107
■ “TurboVNC Connection Profiles and Dynamic Quality and Performance Tradeoff”

on page 109

For instructions in using the TurboVNC server, see “Manually Using TurboVNC” on
page 40. The TurboVNC commands are not normally in your PATH. Either add their
location /opt/TurboVNC/bin to your PATH or enter full pathnames to the
following commands.

Common TurboVNC Scenarios

TurboVNC Server Scenarios
TABLE B-1 describes different scenarios for the TurboVNC server, the vncserver
command, and respective comments.

TABLE B-1 Common TurboVNC Server Scenarios

Scenario Command Comment

Start a TurboVNC session
with default settings.

vncserver The X display number of a TurboVNC
session is printed out whenever you
start the session.

Start a TurboVNC session
with a given virtual desktop
size.

vncserver -geometry w x h Where the desktop is w x h pixels in
size. Default is 1240x900 pixels.
107

Upon startup, the TurboVNC server uses $HOME/.vnc/xstartup if the file exists.
If the file does not exist, the TurboVNC server creates one. The TurboVNC server
attempts to use operating system specific techniques to launch the user’s most
recently used window manager.

TurboVNC Viewer Scenarios
On a Windows host, start a TurboVNC viewer by selecting TurboVNC Viewer in
the TurboVNC Start Menu group. A small GUI (shown in FIGURE 3-1 on page 46)
appears to allow selection of a Connection profile. The TurboVNC connection profiles
are further described in“TurboVNC Connection Profiles and Dynamic Quality and
Performance Tradeoff” on page 109

TABLE B-2 describes different scenarios for starting a TurboVNC viewer from a
command line.

List all your TurboVNC
sessions.

vncserver -list Lists all the TurboVNC sessions of the
current user on this host.

Kill the TurboVNC session
of X display number display.

vncserver -kill :display TurboVNC sessions can only be killed
by the user that started the session.

TABLE B-2 Common TurboVNC Viewer Scenarios

Scenario UNIX and Windows Commands Comment

Connect to the VNC server
session running on
machine host that has an X
display number of display.

vncviewer host[:display] Note the single colon, as is standard
for an X display name.

Similar to previous
scenario, but do not allow
others to view or share
your session.

vncviewer -noshared host[:display]
vncviewer /noshared host[:display]

The default is to allow any user who
correctly enters your VNC password
to view your session.

Set the JPEG quality to q. vncviewer -quality q host[:display]
vncviewer /quality q host[:display]

Where q is a number between 1 and
100 (default is 95). Once connected,
you can change this dynamically
using the F8 menu.

TABLE B-1 Common TurboVNC Server Scenarios (Continued)

Scenario Command Comment
108 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

TurboVNC Connection Profiles and Dynamic
Quality and Performance Tradeoff
TABLE B-3 describes the three predefined connection profiles, which are alternative
tradeoffs of quality versus performance, intended to be chosen based on your
network bandwidth. The High Quality profile is the default.

Set the JPEG chrominance
subsampling to s.

vncviewer -samp s host[:display]
vncviewer /samp s host[:display]

Where s is 1x for no subsampling
(4:4:4), 2x for 4:1:1 subsampling, 4x
for 4:2:2 subsampling, or gray for no
chominance. Default is 1x.
Once connected, you can change this
setting dynamically using the F8
menu. See “Chrominance
Subsampling” on page 82 for more
information.

Improve performance, at
the expense of image
quality.

vncviewer -medqual host[:display] Use Medium Quality connection
profile.

Minimize bandwidth
consumption at the
expense of image quality.

vncviewer -lowqual host[:display] Use Low Quality connection profile.

Connect to the VNC server
session running on
machine host and listening
on port port.

vncviewer host::port Note the double colons.

TABLE B-3 TurboVNC Connection Profiles

Connection Profile
Name Equivalent Options

Network and Bandwidth
Consumption Quality Description

High Quality -samp 2X -quality 80. Local area network (LAN,
50 Megabit/second or
faster).

Perceptually lossless. This
profile should produce no
noticeable image
compression artifacts for
most applications.

TABLE B-2 Common TurboVNC Viewer Scenarios (Continued)

Scenario UNIX and Windows Commands Comment
Appendix B TurboVNC Reference 109

▼ To Select the Connection Profile

1. In the Java viewer, click the Options button at the top of the browser window.

2. Select the desired connection profile. See FIGURE B-1.

Medium Quality -samp 2X -quality 80 Medium-speed networks
such as 10 Megabit/second
Ethernet. This profile uses
about half the network
bandwidth of the default
profile.

Some image compression
artifacts, but they are
generally minor and not
very noticeable.

Low Quality -samp 4X -quality 30 Minimize bandwidth
consumption at the expense
of image quality. This
profile uses about half the
network bandwidth of the
medium quality profile.

This profile provides
optimal performance on
low-bandwidth
connections, such as
broadband. The image
quality has very visible
artifacts but is still usable.
You might want to take
advantage of TurboVNC’s
Lossless Refresh feature.
See “Lossless Refresh” on
page 113.

TABLE B-3 TurboVNC Connection Profiles (Continued)

Connection Profile
Name Equivalent Options

Network and Bandwidth
Consumption Quality Description
110 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

FIGURE B-1 WebVNC Options Dialog

■ In the Windows TurboVNC Viewer, there are three buttons in the TurboVNC
Connection dialog that enable you to easily select the connection profile. Click
this dialog’s Options button to select the Image delivery and other attributes, as
shown in FIGURE B-2.

Or, after connecting to the server, click on the Connection Options button in the
toolbar to obtain the same dialog. This functionality enables you to reconfigure
visual quality and performance attributes on-the-fly.
Appendix B TurboVNC Reference 111

FIGURE B-2 TurboVNC Viewer Options Dialog on a Windows Client

■ In the Solaris and Linux TurboVNC Viewer, the High Quality profile is the
default. You can use the -lowqual and -medqual command-line options of
vncviewer to switch to the Low Quality or Medium Quality profile, respectively.

You can also press the F8 key after connecting to pop-up a menu (see FIGURE B-3)
from which you can select a different connection profile. This functionality
enables you to reconfigure visual quality and performance on-the-fly.
112 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

FIGURE B-3 TurboVNC’s Configuration Dialog (Defaults for High Quality Are Shown)

TurboVNC’s Solaris and Linux viewer supports image compression types JPEG or
None (RGB). None (RGB) turns off image compression altogether, which is useful
when connecting to a TurboVNC server running on the same machine as the viewer,
or to a TurboVNC server located across a gigabit or faster network. Disabling image
compression greatly reduces the CPU usage on the server and client, at the expense
of greatly increasing the network usage.

Lossless Refresh
TurboVNC can optionally encode images as RGB, which is fully lossless and
uncompressed, but this mode does not perform well except on extremely fast
networks. Another option for quality-critical applications is the Lossless Refresh
feature. Lossless Refresh causes the server to send a mathematically lossless (Zlib-
compressed RGB) copy of the current screen to the viewer. So, for instance, you can
rotate, pan, or zoom an object in your application using a very lossy quality setting.
Then, when you are ready to interpret or analyze the object closely, you can request
a lossless refresh of the screen.
Appendix B TurboVNC Reference 113

▼ To Perform a Lossless Refresh
● Take one of the following actions:

■ In the Solaris or Linux TurboVNC Viewer, select Lossless Refresh from the F8
pop-up menu.

■ On a Windows TurboVNC viewer, either press Ctrl-Alt-Shift-L or click on the
Lossless Refresh toolbar icon.

■ In the Java TurboVNC Viewer, click the Lossless Refresh button at the top of the
browser window.
114 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

APPENDIX C

Sun Grid Engine Reference

This appendix provides basic information about the Sun Grid Engine commands and
options. More thorough information is available in the Sun Grid Engine
documentation. See “Related Documentation” on page xv.

Topics in this section include:
■ “Accessing the Sun Grid Engine Environment” on page 115
■ “Setting Up the Sun Grid Engine Environment Variables” on page 117
■ “Basic Sun Grid Engine Commands” on page 118
■ “qsub and qrsh Commands” on page 119
■ “Example Sun Grid Engine Job Script” on page 121

Accessing the Sun Grid Engine
Environment
To access Sun Grid Engine, the client host NFS mounts the Sun Grid Engine
installation. Your client host should mount Sun Grid Engine so that you can use the
same $SGE_ROOT as the NFS server does. (The default is /gridware/sge.)

▼ To Access the Sun Grid Engine Environment
1. Test the accessibility of the $SGE_ROOT directory from your client host:

where /gridware is the base directory of your $SGE_ROOT.

ls /net/nfsserverhostname/gridware
115

2. From your client host, access the NFS server’s $SGE_ROOT as the client’s own
$SGE_ROOT using /etc/vfstab, /etc/fstab, or automount.

Note – Client hosts must not mount the NFS server with nosuid option, since
setuid is needed by rlogin and rsh.

■ For Solaris automounting:

a. Add the following line to the /etc/auto_direct file:

where /gridware is the base directory of your $SGE_ROOT.

b. Restart the automounter:

■ For the Solaris 10 (or later) OS

■ For earlier Solaris releases:

Note – The easiest method to automount every file system from the NFS server is to
create a symbolic link. For example:
ln -s /net/nfsserverhostname/$SGE_ROOT $SGE_ROOT
However, you must ensure that such a mount allows suid access.

■ For Linux mounting:

a. Add the following line to the /etc/fstab file:,

b. Type these two commands:

where /gridware is the base directory of your $SGE_ROOT.

/gridware -rw,suid,bg,hard,noquota,intr nfsserverhostname:/gridware

svcadm -v restart autofs

/etc/init.d/autofs stop ; /etc/init.d/autofs start

nfsserverhostname:/gridware /gridware nfs auto,suid,bg,intr 0 0

mkdir /gridware
mount /gridware
116 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Note – If you use NIS to resolve host names, add the server’s name to the
/etc/hosts file and ensure that files appears in the hosts entry in
/etc/nsswitch.conf

3. If your grid installation requires it, copy the server’s sge_qmaster line from the
server’s /etc/services file into your client’s.

This step is not needed if the SGE settings files set the SGE_QMASTER_PORT
environment variable. See “Setting Up the Sun Grid Engine Environment Variables”
on page 117.

Setting Up the Sun Grid Engine
Environment Variables

▼ To Set Up the Sun Grid Engine Environment
Variables

● Set up the Sun Grid Engine environment variables:

■ tcsh and csh users set up environment variables using:

Substitute /gridware/sge with your value for $SGE_ROOT.

■ sh, bash, and ksh users use:

substituting /gridware/sge with your value for $SGE_ROOT.

Note – These commands add $SGE_ROOT/bin/$ARCH to $path, add
$SGE_ROOT/man to $MANPATH, set $SGE_ROOT, and if needed, set $SGE_CELL
(probably default). These commands probably also set your SGE_QMASTER_PORT
environment variable.

submit_host% source /gridware/sge/default/common/settings.csh

$. /gridware/sge/default/common/settings.sh
Appendix C Sun Grid Engine Reference 117

You might want to insert a command like these in your login configuration file,
probably subject to a test that the settings file exists (is readable).

Basic Sun Grid Engine Commands
TABLE C-1 provides a brief description of the basic Sun Grid Engine commands.

If SGE commands such as qstat are still not found after setting up the
environment, have your system administrator verify that the NFS server contains
binaries for your client’s architecture (operating system and processor, as output by
SGE’s arch command at $SGE_ROOT/util/arch). For example, if arch prints
sol-amd64, then $SGE_ROOT/bin should contain a subdirectory named sol-
amd64.

qsub job output is redirected to a file (and qrsh output is not). By default, this file
is $HOME/JobName.oJobId. Any error output is likewise saved in the error file, which
defaults to $HOME/JobName.eJobId. Other differences between qsub and qrsh are
presented in TABLE C-3. Both qsub and qrsh require an absolute (starting with /) or
relative path to the program or script to be submitted. $PATH will not be searched to
locate qsub or qrsh.

TABLE C-1 Basic Sun Grid Engine Commands

Command Description

qmon & Starts a graphical user interface (GUI) for displaying the Sun Grid
Engine state and for submitting jobs. A Sun Grid Engine
administrator can also use the GUI to alter the state of Sun Grid
Engine.

qstat Shows jobs you have submitted, yet are not complete.

qstat -f Shows available queues and execution hosts, the architecture
(operating system and processor type), the current state (au means
unavailable), all running jobs, and other information.

qsub Submits a job for future execution. This job might need to wait until
necessary resources are available. Job output is saved in files.

qrsh Submits an interactive job. If the job cannot start immediately, you
are told to try again later. The job is not queued. Job output goes to
the invoking window.
118 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

qsub and qrsh Commands
The qsub command starts batch jobs at a later time. The qrsh command runs jobs
interactively.

Some Common qsub and qrsh Options
TABLE C-2 provides command options common to both qsub and qrsh.

TABLE C-2 Common qsub and qrsh Options

Option Description

-v variable Introduces environment variables whose values should be
copied from the current shell to the job. You can also use -v
variable=value to assign the value that should be saved with the
job for that variable.

-q queue-name Enables you to demand that your job execute on a particular
queue. Using wildcards such as “*@myserver”, you can
demand any queue on a certain host without specifying which
queue. Quoting is needed to pass the wildcard characters to
qsub, rather than having the characters expanded by your
interactive shell.

-l resource=value[,resource=value]... Specifies Sun Grid Engine job resource attributes.

graphics=1 Allocates use of a graphics accelerator.

arch=string Where string identifies the processor and operating system. For
example:

sol-sparc64

sol-sparc

Solaris SPARC (64-bit)
Solaris SPARC (32-bit)

sol-amd64

sol-x86

Solaris on x64 (64-bit)
Solaris on x86 (32-bit)

lx24-amd64

lx24-x86

Linux (2.4 or 2.6 kernel) on x64 (64-bit)
Linux (2.4 or 2.6 kernel) on x86 (32-bit)

Wildcarding is supported, if quoted to keep the submit shell
from expanding the wildcards. For example:

"sol-sparc*"

"*-x86"

"lx24-*"

Solaris SPARC (32-bit or 64-bit)
Solaris or Linux on x86 (32-bit)
Linux (2.4 or 2.6 kernel, 32-bit or 64-bit)
Appendix C Sun Grid Engine Reference 119

Different Default Behavior of qsub and qrsh

Though the qsub and qrsh commands start jobs, their respective default behavior is
different. TABLE C-3 presents the differences in qsub’s and qrsh’s defaults for certain
options.

Note – Use the -w option of qsub or qrsh to obtain more information about why
Sun Grid Engine cannot schedule a job to run.

- h_rt=hour:minute:seconds
s_rt=hour:minute:seconds

Hard runtime limit. After the specified hard runtime limit, Sun
Grid Engine aborts the job using the SIGKILL signal. If the
similar s_rt soft limit is reached, Sun Grid Engine warns the
job by sending the job the SIGUSR1 signal. This behavior is
effective only if the job catches and handles that warning signal.
Jobs that do not specify an elapsed time limit inherit a system
default. The default is necessary for the Advance Reservation
system to assure resource availability.

TABLE C-3 Differences in qsub and qrsh Command Options

Option Mnemonic qsub Default qrsh Default Behavior

(batch job) (interactive)

-now [yn] now n y If the job cannot run immediately:
y = Submission fails.
n = Spool the job for later.

-b [yn] binary n y n = Target script file is copied into the job
and scanned for #$ options (job default
functions).
y = Neither of these events happen.

-w [ewnv]

e

w

n

v

warn

error

warning

none

verify

n e

Fail submit if job cannot run.
Print message if job cannot run.
Enqueue syntactically valid jobs.
Explain any reason job cannot run.

TABLE C-2 Common qsub and qrsh Options

Option Description
120 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

Example Sun Grid Engine Job Script
The following example job script starts /opt/VirtualGL/bin/glxspheres on a
Solaris or Linux graphics server. This script is a simplified version of
$SGE_ROOT/graphics/RUN.glxspheres. Italicized text in this listing provides
commentary, but is not part of the job script itself.

#!/bin/sh This script is interpreted by the Bourne shell, sh.

#

The name of my job:

#$ -N glxspheres

#

The interpreter SGE must use:

#$ -S /bin/sh Sun Grid Engine always uses sh to interpret this script.

#

Join stdout and stderr:

#$ -j y

#

This job needs a graphics device:

#$ -l gfx=1 # Allocate a graphics resource to this job.

#

Specify that these environment variables are to be sent to SGE with the job:

#$ -v DISPLAY

#$ -v VGL_CLIENT

#$ -v VGL_GAMMA

#$ -v VGL_GLLIB

#$ -v VGL_SPOIL

#$ -v VGL_X11LIB

#$ -v SSH_CLIENT

If these variables are not set before qsub/qrsh is invoked,

then the job will find these variables set, but with a null string value ("").

#

Script can run on what systems?

Solaris (SPARC or x86, 32-bit or 64-bit) and Linux systems (32- or 64-bit),

provided glxspheres is installed on the target system in one of the paths below.

#$ -l arch=sol-sparc|sol-sparc64|sol-x86|sol-amd64|lx24-x86|lx24-amd64

If VGL_DISPLAY is set by SGE, then run program with vglrun. Otherwise don't.

if ["${VGL_DISPLAY+set}"]; then If VGL_DISPLAY is set (even if null)...

VGLRUN=/opt/VirtualGL/bin/vglrun Then the script will use vglrun to launch application.

 if [! -x $VGLRUN]; then

echo 1>&2 "vglrun not found on host ${HOSTNAME:=‘hostname‘}"

exit 1
Appendix C Sun Grid Engine Reference 121

 fi

else

 VGLRUN=""

fi

if [-x /opt/VirtualGL/bin/glxspheres]; then

 path=/opt/VirtualGL/bin/glxspheres

else

 echo 1>&2 "glxspheres not found on host ${HOSTNAME}"

 exit 2

fi

Sun Grid Engine job starts vglrun which starts glxspheres

with any arguments passed to this script. If VGL_DISPLAY is not set,

$VGLRUN will be the empty string, and vglrun won't be invoked.

$VGLRUN "$path" "$@"
122 Sun Shared Visualization 1.1 Software Client Administration Guide • March 2008

	Sun™ Shared Visualization 1.1 Software Client Administration Guide
	Contents
	Figures
	Tables
	Preface
	Sun Shared Visualization 1.1 Introduction
	Sun Shared Visualization 1.1 Software Introduction
	Traditional Graphics Models
	Sun Shared Visualization 1.1 Model

	Software Components
	Sun Grid Engine
	Sun Grid Engine Advance Reservation Server
	VirtualGL
	TurboVNC
	TurboVNC X Extensions

	Supported Platforms
	Server Platforms
	Server Graphics Accelerators
	Client Platforms

	Shared Visualization 1.1 Server Starting Techniques
	Startup Methods
	Client Types

	Client Software Installation Matrix
	Startup Method Guide

	Sun Shared Visualization 1.1 Client Installation
	Sun Shared Visualization 1.1 Software
	Installation on a Solaris or Linux Client
	Software Components That Are Not Needed on a Client
	To Install Sun Shared Visualization 1.1 Software on a Solaris or Linux Client
	To Remove the Sun Ray Plug-In
	To Remove the Sun Shared Visualization 1.1 Software From Solaris or Linux Clients

	Installation on a Windows Client
	To Install TurboVNC on a Windows Client
	Enabling VirtualGL Image Transport on a Windows Client
	To Install VirtualGL on a Windows Client
	To Install Exceed for Windows

	Configuring Exceed for Windows
	To Disable Pixel Format Conversion (for Exceed 2006 and Earlier)
	To Disable the Backing Store
	To Obtain Optimal Performance With Exceed

	Removing Sun Shared Visualization 1.1 Software From a Windows Client
	To Remove the Sun Shared Visualization 1.1 Software From a Windows Client

	Manually Using the Sun Shared Visualization 1.1 Software
	Manual Startup Overview
	VirtualGL Startup Sequence
	vglrun Syntax Summary
	vglrun Verification

	Using VirtualGL From a Sun Ray Client
	To Use VirtualGL From a Sun Ray Client When the Sun Ray Server and the Graphics Server Are Different Hosts
	To Use VirtualGL From a Sun Ray Client When the Sun Ray Server Is the Graphics Server

	Using VirtualGL From Other Clients
	To Use VirtualGL From a UNIX Client
	Using VirtualGL From a Windows Client
	To Use VirtualGL From a Windows Client

	Normal VirtualGL Messages
	VirtualGL Client-Side Messages
	VirtualGL Server Messages

	Troubleshooting VirtualGL
	To Verify X Server Access
	Could Not Connect
	To Reconnect to Your vglclient

	Manually Using TurboVNC
	TurboVNC Process Overview

	Manually Using the vncserver Command
	To Select a TurboVNC Password
	To Access the Graphics Server
	To Start the TurboVNC Server Session
	To Start a TurboVNC Viewer and Connect to Your TurboVNC Session
	To Start a Graphics Application Within a TurboVNC Session
	To Terminate the TurboVNC Session

	Manually Using the RUN.vncserver Script
	To Start the TurboVNC Server Session Using RUN.vncserver
	To Connect a Viewer to Your RUN.vncserver Session

	Security With TurboVNC
	To Secure the Connection Between the TurboVNC Server and Viewer
	Performance Notes on TurboVNC and ssh

	Performance and Measurement
	Spoiling
	TurboVNC Quality Controls

	Using Sun Grid Engine to Start the Sun Shared Visualization 1.1 Software
	Preparing to Use Sun Grid Engine With VirtualGL
	Determining if Your Client’s X Server Allows Remote TCP Connections
	Determining if Your Client Host Can Be a Sun Grid Engine Submit Host
	Sun Grid Engine Submit Host Clients
	Windows Submit Hosts
	Clients That Are Not Sun Grid Engine Submit Hosts

	To Prepare to Use VirtualGL From a Windows Client

	Submitting Sun Grid Engine Graphics Jobs
	To Submit Sun Grid Engine Graphics Jobs if Your Client Is Also a Sun Grid Engine Submit Host
	To Submit Sun Grid Engine Graphics Jobs if Your Client Is Not a Sun Grid Engine Submit Host

	Using Sun Grid Engine to Start Your Graphics Application
	Easing Graphics Job Submission Using alias
	Graphics Job Submission Without a Job Script

	Submitting Sun Grid Engine TurboVNC Jobs
	To Select a TurboVNC Password
	To Start the TurboVNC Server Session
	To Connect a TurboVNC Viewer to Your RUN.vncserver Session
	To Start a Graphics Application Within a TurboVNC Session
	To Terminate the RUN.vncserver Session

	Advance Reservations
	Advance Reservation Overview
	Using the Advance Reservation Feature
	Reserve AR Command-Line Client
	To Start the AR Client

	Reserve GUI Client
	To Start the AR GUI Client
	To See Pending Reservations
	To Delete a Reservation

	Submitting a Job to an Advance Reservation

	VirtualGL Reference
	Common vglconnect Scenarios
	Common vglrun Scenarios
	Chrominance Subsampling
	Gamma Correction
	Default Gamma Correction Behavior

	VirtualGL Options and Environment Variables
	VirtualGL GUI for Quality and Performance Tradeoff
	To Start the VirtualGL GUI
	Using the VirtualGL GUI

	vglclient options

	Advanced OpenGL Features
	Stereographic Rendering
	Quad-Buffered Stereo
	Anaglyphic Stereo

	Transparent Overlays

	Troubleshooting Common Errors
	vglconnect and ssh Issues
	VirtualGL Issues
	vglclient Messages (Normally in the Log for vglconnect)

	vis_report Reporting Script
	Verifying Advanced Feature Support
	To Verify Quad-Buffered Stererographics on the Server
	To Verify Client Features

	GLX Spheres Test Program

	TurboVNC Reference
	Common TurboVNC Scenarios
	TurboVNC Server Scenarios
	TurboVNC Viewer Scenarios
	TurboVNC Connection Profiles and Dynamic Quality and Performance Tradeoff
	To Select the Connection Profile

	Lossless Refresh
	To Perform a Lossless Refresh

	Sun Grid Engine Reference
	Accessing the Sun Grid Engine Environment
	To Access the Sun Grid Engine Environment

	Setting Up the Sun Grid Engine Environment Variables
	To Set Up the Sun Grid Engine Environment Variables

	Basic Sun Grid Engine Commands
	qsub and qrsh Commands
	Some Common qsub and qrsh Options
	Different Default Behavior of qsub and qrsh

	Example Sun Grid Engine Job Script

