Changes between Version 1 and Version 2 of jazz/12-10-25
- Timestamp:
- Oct 31, 2012, 4:53:06 PM (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
jazz/12-10-25
v1 v2 5 5 * 9:10am '''Hadoop: Thinking Big''' - John Schroeder (MapR Technologies) 6 6 * MapR breaks Terasort benchmark record on Google Compute Engine 7 * 9:20am Plenary 8 * '''Beyond Batch''' - Doug Cutting (Cloudera) 7 * 9:20am '''Beyond Batch''' - Doug Cutting (Cloudera) 9 8 * HBase: First Non-Batch Component 10 9 * Google Give US Map - 2012 Spanner Paper , 26 authors! 11 10 * Cloudera Impala (2010) -> Google Dremel (2010) : online queries !! 12 * 9:30am Plenary 13 * '''Cloud, Mobile and Big Data – How Analytics Provides Value to the Buzzwords''' - Paul Kent (SAS) 11 * 9:30am '''Cloud, Mobile and Big Data – How Analytics Provides Value to the Buzzwords''' - Paul Kent (SAS) 14 12 * 讓企業可以更即時地做出決策 - Action in Time 15 13 * Predicting Future outcomes 16 * 9:35am Plenary 17 * '''They Don't Teach You That In School''' - Cathy O'Neil, Julie Steele (O'Reilly Media, Inc.) 14 * 9:35am '''They Don't Teach You That In School''' - Cathy O'Neil, Julie Steele (O'Reilly Media, Inc.) 18 15 * What is the requirement of Data Scientist - Machine Learning, Statistics 19 16 * Feature Selection - Machine Learning for Ad. 20 * 9:45am Plenary 21 * '''From Traditional Database to Big Data Platform''' - Irfan Khan (SAP) 22 * 9:50am Plenary 23 * '''Of Rocket Ships and Washing Machines: Data Technology for People''' - Joe Hellerstein (Trifacta and UC Berkeley) 17 * 9:45am '''From Traditional Database to Big Data Platform''' - Irfan Khan (SAP) 18 * 9:50am '''Of Rocket Ships and Washing Machines: Data Technology for People''' - Joe Hellerstein (Trifacta and UC Berkeley) 24 19 * 就像洗碗機的發明,我們還在很早期的資料科學發展階段,因為八成的資料處理工作都在整理資料 - 80% work is in cleaning the data 25 20 * Develop productivity technology 26 21 * Shreddr - http://www.captricity.com 27 22 * Analytic Trifecta 28 * 10:00am Plenary 29 * '''Are We Really Winning the Information Revolution?''' - Samantha Ravich (National Commission for the Review of R&D Programs in the Intelligence Community) 23 * 10:00am '''Are We Really Winning the Information Revolution?''' - Samantha Ravich (National Commission for the Review of R&D Programs in the Intelligence Community) 30 24 * 我們骨子裡知道答案就在那一堆資料裡,然而現在我們有太多太多的資料了。 31 25 * 資料太多,必須要透過選擇、考慮優先權,才有辦法真正從中得到洞見,做出正確的決策。 … … 62 56 * (Think: 這是需求的最開始規劃階段應該思考的問題, 考慮 MapReduce 跟 HDFS -> 多少計算、儲存,但是網路常常會被忽略 -> Switch 選擇與監控支援. It's all about SCALE!!) 63 57 * QoS 支援 - 這些問題都是在非常大型的環境裏面才會發生 64 * [http://www.openflow.org OpenFlow](SDN, Software Defined Network)對 Hadoop 環境的影響 - 為了 Data Locality / Rack Aware 過去必須要靠人工設定58 * OpenFlow (SDN, Software Defined Network)對 Hadoop 環境的影響 - 為了 Data Locality / Rack Aware 過去必須要靠人工設定 65 59 * 14:30pm '''Is Your Cluster a Leaning Tower of Pisa?''' - Michael Segel (Think Big Analytics) 66 * 60 * 笑話:醫學系二年級的學生最主要學到的是怎麼問病患問題!!因為好的診斷來自好的問題!! 61 * (Think: 這裡舉的問題例子還真像 forum.hadoop.tw 常見的問題,結果要經過兩三次往返才能真正切入問題本身,有時不是叢集架構問題,但有時候還是習慣假設是環境的問題) 62 * (Think: CHUG 的 Logo -> 放個台灣來設計個 Taiwan Hadoop User Group Logo) 63 * (Think: 企業導入 Hadoop 的流程 Workflow . FAQs , Vendor Supply Chain , ..) 64 * Different Type of Cluster - from "on promise" to "CAAS (Cluster as a Service)" 65 * CAAS - Redundant Data Centers as an option (異地備援, CDN) 66 * DR(Desaster Recovery)/BCP(?) 67 * Golden Ratio - 68 * CPU cores to Memory - 4~8 GB RAM per Core 69 * 1+ Spindles (Hard Drives) per Core 70 * > 4 drives 1GBe is not enough (Network) 71 * '''According to Moore -> the optimal ratio will be re-evaluated.''' 72 * Think about TCO (Total Cost of Ownership)!! 73 * Using VMs : 74 * PRO: Allow Multi-tendency 75 * In furture - we expect to see more virtualization 76 * Mesos / Spark - Berkly 77 * YARN 78 * Storm 79 * Use VM to keep the ratio 'balance'!! 67 80 * 16:10pm '''Real-time Big Data Without Streaming''' - Ron Bodkin (Think Big Analytics) 68 * 17:00pm '''Realtime Processing with Storm''' - Gabriel Eisbruch (mercadolibre.com), Luis Darío Simonassi (mercadolibre.com), Jonathan Leibiusky (mercadolibre.com) 81 * 算是比較高階的架構問題,不同的即時性應用該採用怎樣的架構。 82 * 覺得基本上元件就那幾樣(NoSQL, Index, Search, Streaming Server),但是後續更難的應該是把這些元件連接起來的方法(Ex.接頭)。 83 * 17:00pm '''Realtime Processing with Storm''' - Gabriel Eisbruch (Mercadolibre.Com), Luis Darío Simonassi (MercadoLibre.Com), Jonathan Leibiusky (MercadoLibre.com)