Changes between Initial Version and Version 1 of jazz/12-10-25


Ignore:
Timestamp:
Oct 26, 2012, 2:37:58 AM (12 years ago)
Author:
jazz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • jazz/12-10-25

    v1 v1  
     1= 2012-10-25 =
     2
     3== Hadoop World 2012 (Keynotes) ==
     4
     5 * 9:10am '''Hadoop: Thinking Big''' - John Schroeder (MapR Technologies)
     6   * MapR breaks Terasort benchmark record on Google Compute Engine
     7 * 9:20am Plenary
     8 * '''Beyond Batch''' - Doug Cutting (Cloudera)
     9   * HBase: First Non-Batch Component
     10   * Google Give US Map - 2012 Spanner Paper , 26 authors!
     11   * Cloudera Impala (2010) -> Google Dremel (2010) : online queries !!
     12 * 9:30am Plenary
     13 * '''Cloud, Mobile and Big Data – How Analytics Provides Value to the Buzzwords''' - Paul Kent (SAS)
     14   * 讓企業可以更即時地做出決策 - Action in Time
     15   * Predicting Future outcomes
     16 * 9:35am Plenary
     17 * '''They Don't Teach You That In School''' - Cathy O'Neil, Julie Steele (O'Reilly Media, Inc.)
     18   * What is the requirement of Data Scientist - Machine Learning, Statistics
     19   * Feature Selection - Machine Learning for Ad.
     20 * 9:45am Plenary
     21 * '''From Traditional Database to Big Data Platform''' - Irfan Khan (SAP)
     22 * 9:50am Plenary
     23 * '''Of Rocket Ships and Washing Machines: Data Technology for People''' - Joe Hellerstein (Trifacta and UC Berkeley)
     24   * 就像洗碗機的發明,我們還在很早期的資料科學發展階段,因為八成的資料處理工作都在整理資料 - 80% work is in cleaning the data
     25   * Develop productivity technology
     26   * Shreddr - http://www.captricity.com
     27   * Analytic Trifecta
     28 * 10:00am Plenary
     29 * '''Are We Really Winning the Information Revolution?''' - Samantha Ravich (National Commission for the Review of R&D Programs in the Intelligence Community)
     30   * 我們骨子裡知道答案就在那一堆資料裡,然而現在我們有太多太多的資料了。
     31   * 資料太多,必須要透過選擇、考慮優先權,才有辦法真正從中得到洞見,做出正確的決策。
     32
     33== Hadoop World 2012 (Sessions) ==
     34
     35 * 10:50am '''Performing Data Science with HBase''' - Aaron Kimball (WibiData)
     36   * Crunch : MapReduce pipelines for python and Scala - Apache Project
     37   * PCollections : Crunch data sets (P stands for Parallel)
     38 * 11:40am '''Upcoming Enterprise features in Apache HBase 0.96''' - Jonathan Hsieh (Cloudera, Inc)
     39   * '''NOTE: Very Nice slides for Enterprise who plan to use HBase. It will tell you what should you prepare and the required architecture.'''
     40   * Risk = downtime + data lost
     41   * Production System need to avoid risk
     42    * Risks from within the cluster
     43      * Unplanned Maintenanace - Hardware / Software Error - Detection Time + Recovery Time
     44       * automated metadata repairs with ```hbck (0.92)``
     45       * 0.92/0.94 - 180s to detect Region Server Failure, 0.96 - 0~1s to detect Region Server Failure
     46      * Planned Maintanace - Use NameNode HA + ZK to solve the problem
     47    * Risks from outside the cluster
     48      * Amazon 停電問題, Backhoe : the true cyberthreat 怪手才是真正的網路威脅!
     49      * HBase Support Batch Backups - (1) Export / Dist CP / Import (2) Copy Table (異地備援)
     50      * HBase replication (0.92+) - (1) Master - Slave (0.90) (2) Master - Master (0.92)
     51    * Risks from User
     52      * User Err - Ex. drop 'table'
     53      * 解法一:User Level Security (Access Control) - based on Kerbose
     54      * 解法二:Table Snapshot (0.96+)
     55 * 13:40pm '''Designing Scalable Network Architectures for Fast Moving Big Data''' - Kenneth Duda (Arista Networks), Amr Awadallah (Cloudera, Inc.)
     56   * 如何設計大型 Hadoop 叢集的網路架構
     57   * (Think: 講者提到 Buffer 對 Hadoop 效能的影響, 所以在調校)
     58   * ZTP (Zero-Touch Provisioning) - 用來控制 Switch 設定 .... Hmmm... Cool~ ( 用在 eBay )
     59   * MLAG for High Availability - 網路的 HA .... Cool Feature ~
     60   * Fast Server Failover - 如何根據 ICMP 封包的狀態,來判斷伺服器已經離線,為何要等到 OS 判斷呢?直接讓 Switch 告訴連線來源吧~
     61   * eOS : 可以在 Switch 上安裝常用的監控軟體(Ex. Ganglia, Nagios, fping, etc.)
     62   * (Think: 這是需求的最開始規劃階段應該思考的問題, 考慮 MapReduce 跟 HDFS -> 多少計算、儲存,但是網路常常會被忽略 -> Switch 選擇與監控支援. It's all about SCALE!!)
     63   * QoS 支援 - 這些問題都是在非常大型的環境裏面才會發生
     64   * [http://www.openflow.org OpenFlow] (SDN, Software Defined Network)對 Hadoop 環境的影響 - 為了 Data Locality / Rack Aware 過去必須要靠人工設定
     65 * 14:30pm '''Is Your Cluster a Leaning Tower of Pisa?''' - Michael Segel (Think Big Analytics)
     66   *
     67 * 16:10pm '''Real-time Big Data Without Streaming''' - Ron Bodkin (Think Big Analytics)
     68 * 17:00pm '''Realtime Processing with Storm''' - Gabriel Eisbruch (mercadolibre.com), Luis Darío Simonassi (mercadolibre.com), Jonathan Leibiusky (mercadolibre.com)