Version 14 (modified by chris, 17 years ago) (diff) |
---|
- The sample R program is from here
- Original R Program of 10 loops (without Rmpi)
start_time <- Sys.time() # first make some data n <- 1000 # number of obs p <- 30 # number of variables x <- matrix(rnorm(n*p),n,p) beta <- c(rnorm(p/2,0,5),rnorm(p/2,0,.25)) y <- x %*% beta + rnorm(n,0,20) thedata <- data.frame(y=y,x=x) # summary(lm(y~x)) fold <- rep(1:10,length=n) fold <- sample(fold) rssresult <- matrix(0,p,10) for (j in 1:10) { for (i in 1:p) { templm <- lm(y~.,data=thedata[fold!=j,1:(i+1)]) yhat <- predict(templm,newdata=thedata[fold==j,1:(i+1)]) rssresult[i,j] <- sum((yhat-y[fold==j])^2) } } end_time <- Sys.time() runTime<-difftime(end_time,start_time,units="secs") write(runTime,file="single_10_runTime",append=TRUE) write(rssresult,file="single_10_result") q(save="no")
- Parallel R Program of 10 loops (with Rmpi)
# Create Start Timer start_time<-Sys.time() # Initialize MPI library("Rmpi") # Notice we just say "give us all the slaves you've got." mpi.spawn.Rslaves(nslaves=2) if (mpi.comm.size() < 2) { print("More slave processes are required.") mpi.quit() } .Last <- function(){ if (is.loaded("mpi_initialize")){ if (mpi.comm.size(1) > 0){ print("Please use mpi.close.Rslaves() to close slaves.") mpi.close.Rslaves() } print("Please use mpi.quit() to quit R") .Call("mpi_finalize") } } # Function the slaves will call to perform a validation on the # fold equal to their slave number. # Assumes: thedata,fold,foldNumber,p foldslave <- function() { # Note the use of the tag for sent messages: # 1=ready_for_task, 2=done_task, 3=exiting # Note the use of the tag for received messages: # 1=task, 2=done_tasks junk <- 0 done <- 0 while (done != 1) { # Signal being ready to receive a new task mpi.send.Robj(junk,0,1) # Receive a task task <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag()) task_info <- mpi.get.sourcetag() tag <- task_info[2] if (tag == 1) { foldNumber <- task$foldNumber rss <- double(p) for (i in 1:p) { # produce a linear model on the first i variables on # training data templm <- lm(y~.,data=thedata[fold!=foldNumber,1:(i+1)]) # produce predicted data from test data yhat <- predict(templm,newdata=thedata[fold==foldNumber,1:(i+1)]) # get rss of yhat-y localrssresult <- sum((yhat-thedata[fold==foldNumber,1])^2) rss[i] <- localrssresult } # Send a results message back to the master results <- list(result=rss,foldNumber=foldNumber) mpi.send.Robj(results,0,2) } else if (tag == 2) { done <- 1 } # We'll just ignore any unknown messages } mpi.send.Robj(junk,0,3) } # We're in the parent. # first make some data n <- 1000 # number of obs p <- 30 # number of variables # Create data as a set of n samples of p independent variables, # make a "random" beta with higher weights in the front. # Generate y's as y = beta*x + random x <- matrix(rnorm(n*p),n,p) beta <- c(rnorm(p/2,0,5),rnorm(p/2,0,.25)) y <- x %*% beta + rnorm(n,0,20) thedata <- data.frame(y=y,x=x) fold <- rep(1:10,length=n) fold <- sample(fold) #summary(lm(y~x)) # Now, send the data to the slaves mpi.bcast.Robj2slave(thedata) mpi.bcast.Robj2slave(fold) mpi.bcast.Robj2slave(p) # Send the function to the slaves mpi.bcast.Robj2slave(foldslave) # Call the function in all the slaves to get them ready to # undertake tasks mpi.bcast.cmd(foldslave()) # Create task list tasks <- vector('list') for (i in 1:10) { tasks[[i]] <- list(foldNumber=i) } # Create data structure to store the results rssresult = matrix(0,p,10) junk <- 0 closed_slaves <- 0 n_slaves <- mpi.comm.size()-1 while (closed_slaves < n_slaves) { # Receive a message from a slave message <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag()) message_info <- mpi.get.sourcetag() slave_id <- message_info[1] tag <- message_info[2] if (tag == 1) { # slave is ready for a task. Give it the next task, or tell it tasks # are done if there are none. if (length(tasks) > 0) { # Send a task, and then remove it from the task list mpi.send.Robj(tasks[[1]], slave_id, 1); tasks[[1]] <- NULL } else { mpi.send.Robj(junk, slave_id, 2) } } else if (tag == 2) { # The message contains results. Do something with the results. # Store them in the data structure foldNumber <- message$foldNumber rssresult[,foldNumber] <- message$result } else if (tag == 3) { # A slave has closed down. closed_slaves <- closed_slaves + 1 } } # plot the results # plot(apply(rssresult,1,mean)) end_time<-Sys.time() runTime<-difftime(end_time,start_time,units="secs") write(runTime, file="parallel_10_runTime",append=TRUE) write(rssresult, file="parallel_10_result") mpi.close.Rslaves() mpi.quit(save="no")
- Original R Program of 10 loops (without Rmpi)
- Here are the running times(secs) with different times of loops of origianl R:
10 loops : 1.087226 20 loops : 3.395167 30 loops : 7.027248 40 loops : 11.95344 50 loops : 17.02942 60 loops : 23.54457 70 loops : 32.23314 80 loops : 42.41104 90 loops : 53.88992 100 loops : 64.43279
- And Here are the running times(secs) with diffrent times of loops of PARALLEL R (Rmpi):
10 loops : 1.759266 20 loops : 2.582305 30 loops : 4.262631 40 loops : 6.176133 50 loops : 8.695369 60 loops : 12.00457 70 loops : 16.19619 80 loops : 20.33303 90 loops : 25.45973 100 loops : 30.71952
- The Curve is as below:
The Y-aix represents runtime of both single mode and parallel mode.(units: seconds)
The X-aix represents how many times of loop set by us in the sample program (from 10 to 100)
- We could proof that Rmpi will let you program run faster and faster when times of loop larer and larer.
Attachments (3)
- Rmpi_example_test_result.jpg (17.6 KB) - added by chris 17 years ago.
- for_j_loop_times.JPG (26.0 KB) - added by chris 17 years ago.
- for_p_loop_times.JPG (24.5 KB) - added by chris 17 years ago.
Download all attachments as: .zip