
 1

On-demand Mode of Legacy Desktop Software and Its Automatic Deployment
for Cloud-Computing Environment*

Youhui ZHANG, Gelin SU, Weimin ZHENG
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science, Tsinghua University, Beijing 100084, China
zyh02@tsinghua.edu.cn

Abstract*

Owing to some Cloud Computing offerings (like EC2),
now IT infrastructure can be deployed on demand quickly
and elastically. Besides the virtual hardware and system
software, in many cases, it is necessary to deploy
application software in a similar way; then users can get
a fully-functional work environment with required
software conveniently. This paper proposes such a
solution that a user can customize which application
software is required as well as virtual machines’
configurations, and shortly (usually in seconds) all of
he/she required can be accessed. This solution is based on
application virtualization technologies, which can convert
the enormous existing desktop software into on-demand
software without any modification of source code.
Moreover, because of the commonality of frequently-used
applications, a central deployment mechanism, as well as
the Copy-on-Write technology, is used to improve the
efficiency of storage and management without data
conflicts. Besides, some key issues related to Cloud
Computing, such as pay-as-you-go accounting and
prevention of illegal copy are considered. At last,
extensive testing results are provided.

1. Introduction

Cloud Computing [1] [2] refers to both the applications
delivered as services over the Internet and the hardware
and systems software in the datacenters that provide those
services. Then, customers do not generally own the
physical infrastructure; instead, they avoid capital
expenditure by renting usage from a third-party provider
and they consume resources as a service and pay only for
resources that they use.

*Supported by Chinese National 973 Basic Research Program
under Grant 2007CB310900, Chinese National 863 High
Technology Programs under Grant 2006AA01Z111 and
2008AA01A201.

As [1] said, there are three types of Cloud Computing,
which are classified based on the level of abstraction
presented to the programmer and the level of management
of the resources. This paper is focused on the first type
that provides services of virtual hardware and system
software, like EC2 (Elastic Compute Cloud) [3] [4].
Owing to EC2, the customer can deploy many customized
computers with required system software and hardware
configurations quickly. Besides virtual hardware and
system software, in many cases, it is necessary to deploy
application software in a similar way; therefore end users
can get a fully-functional work environment with the
required application software conveniently.

In fact, there are several providers of virtual-machine
technologies have implemented some products to simplify
application deployments, such as VMWARE’s ThinApp
[5] and Citrix’s XenAPP.

This paper proposes such a solution that a user can
select which application software is needed (only if they
can be provided by the Cloud Computing operator) when
he/she customizes the VMs’ configurations in a Cloud
Computing environment. And then, all he/she needed will
be deployed in seconds without manual intervention.

To reach this target, two key challenges should be
conquered:
1) On-demand mode of legacy desktop software

should be provided, which is the baseline of
automatic deployment.

On-demand software is a model of software
deployment whereby a provider licenses an application to
customers for use as a service on demand. Now most
on-demand software belongs to Web-based applications
(such as salesforce.com). In this mode, a web browser is
employed as a running platform for applications with the
collaboration from a remote server. However, applications
running on the platform are not compatible with the
mainstream desktop environment: they should be
rewritten for the web situation.

As mentioned in the paragraphs above, we focus on
such Cloud Computing environments that provide
VM-based IT infrastructure on demand. Therefore, it

mailto:zyh02@tsinghua.edu.cn�
http://en.wikipedia.org/wiki/Capital_expenditure�
http://en.wikipedia.org/wiki/Capital_expenditure�
http://en.wikipedia.org/wiki/Everything_as_a_service�
http://en.wikipedia.org/wiki/Software_deployment�
http://en.wikipedia.org/wiki/Software_deployment�
http://en.wikipedia.org/wiki/Provider�
http://en.wikipedia.org/wiki/Web_service�

 2

would be best to design a transparent method to convert
legacy software into on-demand version.
2) Secondly, a flexible and fast delivery mechanism

for on-demand software is necessary.
After the user has customized software, they should be

delivered instantly (without manual intervention) and
efficiently. Moreover, pay-as-you-go pricing is one of the
key features of Cloud Computing. For the
naturally-network-based software, it is not a trouble.
However, for the legacy desktop software, it is an open
problem.

To overcome these problems, we make the following
contributions towards the automatic deployment of
application software on the Cloud-Computing
environment:
1) Converting legacy desktop applications into

on-demand software transparently:
One model of on-demand software is proposed. Based

on this model and application virtualization technology,
we develop a method to provide a virtual running
environment (including the virtual file system, etc.) for
software, so that the latter can run on any compatible
system on demand (without installation).
2) Deployment the on-demand software in a central

mode with Copy-on-Write (COW) technology
One or more central data servers (depending on

overloads) are used to provide software on demand for the
deployed virtual machines, rather than place the required
software on the VMs in advance. Because of the
commonality of frequently-used applications in the Cloud
Computing environment, this technology can decrease the
storage consumption significantly. On the other side,
different instances share the central data will cause access
conflicts; therefore the COW technology is employed.

Moreover, some access optimizations, including the
local cache, metadata pre-fetch and update, are presented,
too.
3) Functions of accounting and prevention of illegal

copy of on-demand software
Pay-as-you-go pricing is one of the key features of

Cloud Computing. We design an access control protocol
to implement such accounting and prevention of illegal
copy functions based on the file virtualization technology.
4) The prototype and extensive performance tests are

implemented
Combined with the VM technology, such a prototype is

presented. In addition, extensive testes with diverse
configurations (different server/client numbers, cache
sizes, run turns, etc.) are given to measure the startup time
of the on-demand software in this system, which is helpful
to construct the outline of this system’s performance and
scalability.

In this paper, we first present the model of on-demand
software and the design of its runtime system. Its
deployment in the Cloud Computing environment is given

in Section 3, as well as the functions of accounting and
prevention of illegal copy. The prototype, combined with
the real usage scenario, is introduced in Section 4. Then,
the performance tests are presented. Finally, we present
related works and the conclusion.

2. On-demand Software

2.1. The model of on-demand software

Most Windows applications need to be installed before
they can run normally. And most do not write their
implementation from stem to stern; instead a lot of
Windows components provided by the OS are employed.

Then software can be regarded as containing three
parts: Part 1 includes all resources provided by the OS;
Part 2 contains what are created/modified/deleted by the
installation process; and Part 3 is the data
created/modified/deleted during the run time. For
Windows OS, the resources here mainly refer to
files/folders, the related system registry keys/values and
environment variables. The formal definitions of software
parts are presented as follows:
Definition of Part 2: In the initial stage, Part 2 is the set
of all resources created/modified/deleted by the
installation process; during the runtime, any modification
of Part 2 will be moved into Part 3.
Definition of Part 3: In the initial stage, Part 3 is empty;
during the runtime, any modified resource will be added
into this part.

The content of Part 1 is unknown. However, it is not a
problem, because our solution only makes software run on
compatible hosts, which implies that all resources of Part
1 are available on the local system.

During the runtime, the running instance will access
resources of all parts on the fly: some resources are
read-only while some may be modified/added/deleted.
Therefore, no part is fixed: the resource modified by the
application instance at run time will be moved into Part 3.

Then, the design principles are drawn as follows:
1） All related resource accesses should be intercepted

dynamically
2） Part 2 and 3 can be accessed on demand.

These parts are deployed in some central server(s)
described in Section 3.1; and the following section
presents how to design a runtime system to intercept and
redirect these accesses of Part 2 and 3 to the real storage
positions.

2.2. The runtime system of on-demand software

The destination of the runtime system is to make all
parts accessible by the application’s executable file
transparently. Therefore, from the viewpoint of the
software, it looks like that it has been installed on the host.

 3

In our design, the install procedure of a target
application is monitored. Then, Part 2 can be captured.
During the runtime, APIs accessing files and registry
entries are intercepted and redirected to the real storage
position as needed.

The whole runtime procedure is presented as follows:

Step1. Resource
access issued from
the target process

Intercepted
Process

Runtime System

Step2. Intercept
the resource access

Step3. Is it a
modification
(Write/Delete/Creat
e/Update)?

Y
e
s

Step 5.Does the
resource lie in
Part 3?

NO
Step4. Access the
resource where it
is.

Yes
Step6. Modify the
resource where it
is.

N
o

Step 7.Modify the
resource and move
it to Part 3.

Step8. Return the
result.

Figure.1 Work flow of the runtime system

In our previous work of on-demand software [6],
user-level API Interception is employed to complete such
a virtualization environment. In the current version,
redirection of file access is enhanced and the others
remain the same: we use a kernel-level interception
mechanism, which can deal with more file access
operations. For the previous work, we found that some file
accesses issued by the intercepted process cannot be
watched by the user-level mechanism. It looks like that
they are executed by some kernel module (of the process),
or from some undocumented APIs (?). Anyway, the kernel
version works more completely.

This paper is focused on the difference, and other
details can be found in [6]. We use Dokan framework [7],
which can intercept accesses to assigned files/folders in
the kernel space and redirect them to the user level (it can
be regarded as FUSE [8] for Windows). Then, some
callback functions in the user level that implement real
data accesses are called.

Therefore, we complete the flow of Figure 1 (limited to
the file accesses) in the user space to implement a virtual
file system and the real data can be placed anywhere
depending on the concrete usage scenario.

Intercepted
Process

User Space

Kernel Space

F
i
l
e

A
c
c
e
s
s

Windows I/O
subsystem

Dokan Module

C
a
l
l
b
a
c
k

Our Interception
Program

Access the real
data

Figure.2 Access flow of the user-space file
system

3. The Elastic Deployment

3.1. Central deployment

The key observation is that Cloud Computing’s ability
to add or remove resources at a fine grain (for example,
one server at a time with EC2) and with a lead time of
seconds or minutes allows matching resources to
workload much more closely, which is called Elasticity
[1].

Therefore, we should provide Elasticity of on-demand
software. One direct method is to store the on-demand
software in the VM. For example, after customization, the
required software can be placed on a separated virtual disk
and then attached to each VM instance.

However, it brings about management complexities:
on-demand software is distributed to every running
instance; then how to complete software update and
access control will be a challenge. Moreover, the storage
efficiency is low: many copies of same software may exist
in different instances.

Considering the commonality of frequently-used
applications, a central deployment mechanism is
employed. Files of on-demand software are located on
central server(s); as mentioned in Section 2.2, we have
created a virtual drive using Dokan. When a file on this
drive is visited, Dokan will direct accesses to the central
server(s). Thus, only one copy is stored on the server and
shared by multiple VM instances.

However, this method also has some weaknesses:
1） Access of remote files will introduce more delays;
2） Part 3 is modified during the run time, which

causes write-conflicts among different users.
For the first issue, local cache on the VM instance is

enabled: some frequently-accessed files will be cached
locally and its replace strategy is also based on the usage
frequency. The detailed control flow of cache is presented
as follows:
Initial stage:

 4

The Cache is empty, as well as the ordered-list of usage
frequency of files;
Run time:
When on file is accessed, its usage number is increased by
1, and the ordered-list is updated accordingly.
Idle time:
The top n files of the ordered-list, if they have not been
cached locally and if there is still free space in the cache,
are downloaded on the background.

This method improves users' feeling remarkably,
because we find that most frequently-used files belong to
those accessed during the startup process while the startup
time is an important measure of what it feels like to use
the system for everyday work.

Besides these files, metadata of on-demand software
are cached on VM ends, too, which include folder
structures and other folders/files information; the
metadata is transferred in the deployment procedure.
During the normal runtime, when any software is being
launched, its metadata version will be compared with the
one on the server; if out-of-date, the startup procedure will
pause till the new has been downloaded. Owing to the
pre-fetch, VM ends can browser the file hierarchy
smoothly.

For the second, a COW mechanism is employed: when
one file is to be modified, it will be copied completely to
the local cache firstly and all following accesses will be
redirected to the local version. It means that each VM
owns all Part 3 of on-demand software. Fortunately, for
most software, the number of modified files is very
limited.

In addition, Files in Part 3 are cache in the same way
that the common files are managed; the only difference
lies in that their reference numbers are set very large
purposely to avoid to be replaced.

Moreover, load balance of accesses to multiple servers
is also considered: each server owns copies of all software;
therefore, when one server is overloaded, VM ends can
visit others to get same data.

The customization
stage:

Users configure
which software is
needed as well as
the VMs’
configurations.

The deployment
stage:

The system deploys
metadata of on-
demand software to
VM instances.

The runtime stage:

With the cooperation
of the VM end and
server, metadata
synchronization, COW
and other functions
are completed.

Figure.3 Three stages of the deployment for
on-demand software

3.2. Usage accounting

Pay-as-you-go pricing is one of the key features of
Cloud Computing. As mentioned in the previous section,
when an application is being launched, the server will be

contacted. Besides version number, account information is
sent to the server, so that the latter can judge whether it is
legal usage and begin accounting if the answer is yes.

When an application quits (from the viewpoint of our
virtual file system, its main executable is closed), the
accounting ends.

3.3. Prevention of illegal copy

As mentioned before, we implement a virtual file
system to contain files of on-demand software, and then
users can access application files just like they are using
the local file system. Therefore how to prevent the illegal
download is a key consideration. Otherwise, a user can
copy applications to his/her local disk and use them
without permission.

In this solution, an access control mechanism is
implemented to protect some essential files (such as
executable and DLL files of an application): we provide
our own shell program to browse and launch on-demand
software; and only this program and its descendants are
permitted to access on-demand software files.

If the user attempts to use another program (for
example, explorer.exe) to copy one essential file out of the
virtual drive, the Dokan framework will identify whether
they are issued from a legal process or not. Because
explorer.exe is a program outside of the virtualization
environment, its access will be denied.

One exception is cached files: they are stored locally;
therefore it is possible that a user may locate and copy
them out without permission. The current solution is that
we store these files in a deformed mode, for example, file
data is XORed with some predefined string and its layout
is reorganized. In the next version, more sophisticated
cryptography method will be deployed.

As a summary, Figure 4 presents the illustration of
logic organization of the whole design: the virtual file
system shoulders multiple tasks of file-access interception,
access control, cache & metadata management, and real
data access; and other accesses (to registry resources, etc.)
are handled by another module.

On-demand software

Runtime system

Access to
File system

Access to Other
resources

Interceptor
of Registry

Access

Virtual
file system

Access Interceptor

Remote Data Access

Access Controller

Cache&Metadata

Infrastructure level

Local VM & Remote Server(s)

Figure.4 Logic organization of the whole system

 5

4. The Prototype

4.1. Background

Tsinghua University intends to deploy a Cloud
Computing platform for course experiments. Many
courses ask students to complete study assignments and /
or software experiments, so that some computer systems
with specific software are required. We plan to construct
such a Cloud Computing platform, which would provide
lecturers and students with required systems instantly; and
deployed resources will be revoked when the course
finishes.

Now, such a prototype using XEN [9] is under
development; we also implement the automatic software
deployment for this prototype. Because this paper is
focused on software deployment, more details of this
Cloud Computing platform are skipped here.

4.2. Implementation

Based on the design and technologies above, a lot of
desktop applications are transferred into the on-demand
mode, including MS Word 2003, MS Excel 2003, MS
PowerPoint 2003, Lotus Notes, Photoshop, Internet
Explorer 6.0, Outlook Express 6, 7zip, UltraEdit,
FlashGet, Bittorrent and so on.

A browser-based GUI is presented for users to
customized the required software and VMs’ configuration.
As described in Figure 5, 4 virtual computers (in one
virtual cluster) are being created; each node is equipped
with 512M RAM and Windows XP OS, and the user can
select required software through the bottom list. After
about twenty seconds, all four virtual computers can be
accessed through the RDP protocol, while VMs’ network
works within the network-bridge mode.

On the background, besides some PC servers as VMs’
hosts, storage servers are deployed to store all on-demand
software. After VM instances have been created, each of
them will be assigned a unique IP address, which is now
used as the accounting information for storage servers to
judge whether the access is legal or not. In the next
version, more sophisticated mechanism will be developed.

4.3. The shell program

The shell program is a bridge between the guest OS
and storage server(s). It is placed on every VM instance in
advance and will be launched automatically after system
startup. It is also the interception process to complete data
accesses, as described in Section 2.2 and 3.1.

As launched, the shell program initializes Dokan
module and contacts the server to check the version of
metadata. And the latter will retransfer metadata of all
permitted on-demand software to it, depending on the
guest’s IP.

During the runtime, the shell maintains the local cache
as well as the COW mechanism. Then the
frequently-accessed files are saved locally only if the
cache is available; moreover, as any file is modified, it
will be saved in the cache as well and will never be
replaced.

5. Performance Tests

5.1. Test environment

Four PC servers are used as VMs’ hosts. All are
Linux-XEN PCs, equipped with 2 GBytes DDR2
SDRAM and one Intel Core Duo CPU. The hard disk is
one 160 GBytes SATA drive. One Linux server, equipped
with one Intel Core 2 Duo E4500 CPU (2200MHz), 2

Figure.5 The browser GUI of system configurations

 6

GBytes DDR2 SDRAM, and one 240GBytes SATA II
disk, is used as storage server. All machines are connected
with the 100M Ethernet.

Moreover, up to two Windows XP VMs are installed
on every host; for each VM, one local cache with 200M
bytes is reserved.

5.2. Test methods

Startup-time metric is tested.
The application start-up time is the key metric of our

prototypes’ usability. We launch eleven on-demand
software applications at the same time through our shell
program and record their startup time respectively.

One issue here is about how to test the startup time.
Fortunately, Microsoft gives a special API,
WaitForInputIdle, to judge whether the new process has
finished its initialization and is ready to response user’s
input or not. As WaitForInputIdle returns, the elapsed time
is recorded as the startup overhead.

The eleven applications are numbered in Table 1.
Table.1 Application List

Application Name Number
putty 1
vlc 2

Acrobat Reader 3
ZM 4

Storm Codec 5
AbiWord 6

Gtalk 7
7-Zip 8

filezilla 9
UltraEdit-32 10

FlashFXP 11

5.3. Test cases

1) One VM, one storage server
Here, one VM is used as the client of the eleven

software applications. Results of the first and second runs
are presented in Figure 6 respectively.

During the first run, the local cache is empty so that
all data are downloaded from the server on-fly. Before the
second turn, some frequently-used files have been cached
locally based on the usage information of the first.

In our cases, when the 200M cache is filled up, about
75% of accesses during the startup process from these
applications can be satisfied locally.

The baseline startup time, which means all software
are installed locally, are also given for comparison.
 Based on results, we find that, compared with the
local installed version, on-demand introduces 252% ~
270% extra startup-overhead. The exception is ZM
(148%), which is a game application with many graphic
initialization works, so that IO delays are not the decisive
issue.

Moreover, local cache is an effective optimization,
which can reduce the extra overhead by about 40% ~ 58%
(compared with the empty-cache version).

2) Two VMs (on one or two PCs), one storage server

In these cases, two VMs are used as clients, running
on one or two hosts respectively. Their startup time is
recorded in Figure 7 and 8.
 From Figure 7 (two VMs on two hosts), it looks like
that one more VM on another host does not introduce
many overheads: when the cache is empty, compared with
Case 1, the extra overhead is about 11.6% averagely.
 For the case of two VMs on one host, the extra
overhead becomes more: when the cache is empty,
compared with Case 1, about 62% is introduced averagely.
Because two VMs on one host cause some resource
competition, the overall performance is impaired.
 On the other side, local cache still plays an important
role to decrease the startup time. For Figure 7, it reduces
the extra overhead by about 42% averagely; while for the
other, the average reduction is about 54%.

3) Four VMs (on two or four PCs), one storage server

In this case, four VMs are used as clients, running on
two or four hosts respectively. Their startup time is
recorded in Figure 9 and 10.

When the cache is empty, compared with the
corresponding situation of Case 2, the case of four VMs
on four hosts introduces about 8.1% extra overheads
averagely. When the cache is full, it reduces the overhead
by about 42% averagely.

Similarly, the case of four VMs on two hosts
introduces about 3.2% extra overheads averagely,
compared with the corresponding one in Case 2. When the
cache is full, it reduces the overhead by about 41%
averagely.

4) Eight VMs (on four PCs), one storage server

In this case, eight VMs are used as clients, running on
four hosts respectively. Their startup time is recorded in
Figure 11.

When the cache is empty, compared with the
corresponding situation of Case 2, the case of eight VMs
on four hosts introduces about 8.9% extra overheads
averagely. When the cache is full, it reduces the overhead
by about 44% averagely.

Based on the above results, it appears that our

on-demand software will introduce fairly high
overhead as the cache is empty. Moreover, some
analysis (because of the limited space, detailed data is
skipped here) shows that, Dokan framework itself
almost doubles the file-access overhead because it
introduces more context-switches between the kernel
and the user space.

 7

When the cache is used fully, the startup time can
be reduced by half nearly.

On the other side, compared with the extra
overhead introduced by more VM ends (on different
hosts), more VMs on one host increase the startup time
much more remarkably.

6. Related Works

6.1. Cloud Computing

Amazon EC2 [3][4] presents a true virtual computing
environment, allowing customers to use web service
interfaces to launch instances with a variety of operating
systems, manage network’s access permissions, and run
image using as many or few systems as desired.

In contrast, Google’s Cloud Computing platforms, like
BigTable [10], MapReduce [11], and AppEngine [12], are
different. For example, AppEngine is an
application-domain specific platform, which just hosts
traditional web applications, enforcing an application
structure of clean separation between a stateless
computation tier and a stateful storage tier. As we know,
this mode is incompatible with the current desktop
software, which asks developers to write new applications
using Python or Java language.

In addition to the commercial Cloud Computing
offerings mentioned above, which maintains a proprietary
infrastructure with open interfaces, there are open-source
projects aimed at resource provisioning with the help of
virtualization. Usher [13] is a modular open-source virtual
machine management framework from academia.
Enomalism [14] is an open-source cloud software
infrastructure from a start-up company. Similarly,
Eucalyptus [15] is an open-source software infrastructure
for implementing Cloud Computing on clusters; the
interface to Eucalyptus is compatible with Amazon's EC2
interfaces.

Based on the practical requirement (in Section 4.1), we
are developing an EC2-like platform so that a compatible
software deployment solution is needed.

6.2. Fast software deployment

Virtualization has been deployed for fast software
deployment. One solution is Progressive Deployment
System (PDS) [16], which is a virtual execution
environment and infrastructure designed specifically for
deploying software on demand. PDS intercepts a selected
subset of system calls on the target machine to provide a
partial virtualization at the operating system level. This
enables software’s install-time environment to be
reproduced virtually while otherwise not isolating the
software from peer applications on the target machine.

Another similar and practical solution is Microsoft’s
SoftGrid [17]. SoftGrid can convert applications into
virtual services that are managed and hosted centrally but
run on demand locally. Application virtualization reduces
the complexity and labor involved in deploying, updating,
and managing applications.

VMWARE also provides such a solution, ThinApp [5],
which packages an entire application and its settings into a
single executable that is isolated from the OS through
application virtualization. Administrators can plug
ThinApp into the existing management infrastructure to
accelerate application development and desktop
deployment.

Compared with these solutions, ours is also based on
the application virtualization while some unique designs
are considered: a virtual file system is used for file access
redirection and for central deployment with diverse
optimizations; some Cloud Computing-specific issues are
also solved. In addition, all above projects belong to
commercial products, while our solution is the only one
academic project, as we know.

7. Conclusions

This paper analyzes the on-demand mode for legacy
desktop software, and converts them into services.
Combined with the VM technology, we design and
implement a fast deployment system for a Cloud
Computing environment.

In this system, on-demand software is managed and
hosted centrally but run on demand locally, which can also
improve the storage efficiency. Moreover, based on a
virtual file system, transparent application access,
accounting, and prevention of illegal copy are completed.
Besides, some optimizations, including the local cache
and pre-fetch of metadata, are implemented.

References

1. Michael Armbrust, Armando Fox, etc. Above the
Clouds: A Berkeley View of Cloud Computing Export.
Technical Report. 10 February 2009. Available
at http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html.

2. GARFINKEL, S. An Evaluation of Amazon’s Grid
Computing Services: EC2, S3 and SQS . Technical
Report. TR-08-07, Harvard University, August 2007.

3. Amazon Elastic Compute Cloud. Developer Guide,
August 2009. Available
at http://docs.amazonwebservices.com/AWSEC2/late
st/DeveloperGuide/.

4. DECANDIA, G., HASTORUN, D., JAMPANI, etc.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles (2007),

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html�
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html�
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/�
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/�

 8

ACM Press New York, NY, USA, pp. 205–220.
5. VMWARE ThinApp——Agentless Application

Virtualization Overview. White Paper. Available
at http://www.vmware.com/files/pdf/thinapp_intro_w
hitepaper.pdf.

6. Youhui Zhang, Xiaoling Wang, and Liang Hong,
Portable Desktop Applications Based on P2P
Transportation and Virtualization. Proceedings of the
22nd Large Installation System Administration
Conference (LISA '08) San Diego, CA. USENIX
Association, November 9–14, 2008. Pp. 133–144.

7. Dokan: User Mode File System for Windows.
Available at http://dokan-dev.net/.

8. Filesystem in Userspace. Available
at http://fuse.sourceforge.net/.

9. Paul Barham, Boris Dragovic, Keir Fraser, etc. Xen
and the Art of Virtualization. Proceedings of the
nineteenth ACM Symposium on Operating Systems
Principles. Bolton Landing, NY, USA. 2003. Pages:
164 - 177.

10. CHANG, F., DEAN, J., GHEMAWAT, S., etc.
Bigtable: A distributed storage system for structured
data. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI’06) (2006).

11. DEAN, J., AND GHEMAWAT, S. Mapreduce:
simplified data processing on large clusters. In
OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation (Berkeley, CA, USA, 2004),
USENIX Association.

12. Google App Engine: Run your web apps on Google's

infrastructure. Available
at http://code.google.com/intl/en/appengine/.

13. M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker.
Usher: An Extensible Framework for Managing
Clusters of Virtual Machines. In Proceedings of the
21st Large Installation System Administration
Conference (LISA), November 2007.

14. Enomalism elastic computing infrastructure.
http://www.enomaly.com.

15. Daniel Nurmi, Rich Wolski, Chris Grzegorczyk,
Graziano Obertelli, Sunil Soman, Lamia Youseff,
Dmitrii Zagorodnov. The Eucalyptus Open-source
Cloud-computing System, in Proceedings of 9th
IEEE International Symposium on Cluster
Computing and the Grid, Shanghai, China.

16. Bowen Alpern , Joshua Auerbach, et al., PDS: a
virtual execution environment for software
deployment, Proceedings of the First ACM/USENIX
international conference on Virtual execution
environments, March, 2005.

17. Microsoft Application Virtualization. Available
at http://www.microsoft.com/systemcenter/
softgrid/default.mspx.

Figure.6 Startup time of Case 1

http://www.vmware.com/files/pdf/thinapp_intro_whitepaper.pdf�
http://www.vmware.com/files/pdf/thinapp_intro_whitepaper.pdf�
http://dokan-dev.net/�
http://fuse.sourceforge.net/�
http://code.google.com/intl/en/appengine/�
http://www.microsoft.com/systemcenter/�

 9

Figure.7 Startup time of Case 2 (Two VMs on two hosts)

Figure.8 Startup time of Case 2 (Two VMs on one host)

 10

Figure.9 Startup time of Case 3 (Four VMs on four hosts)

Figure.10 Startup time of Case 3 (Four VMs on two hosts)

Figure.11 Startup time of Case 4 (Eight VMs on four hosts)

	1. Introduction
	2. On-demand Software
	2.1. The model of on-demand software
	2.2. The runtime system of on-demand software

	3. The Elastic Deployment
	3.1. Central deployment
	3.2. Usage accounting
	3.3. Prevention of illegal copy

	4. The Prototype
	4.1. Background
	4.2. Implementation
	4.3. The shell program

	5. Performance Tests
	5.1. Test environment
	5.2. Test methods
	5.3. Test cases

	6. Related Works
	6.1. Cloud Computing
	6.2. Fast software deployment

	7. Conclusions

