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1. Overview 
In recent years, a number of new systems, sometimes called “NoSQL” systems, have 
been introduced to provide indexed data storage that is much higher performance than 
existing relational database products like MySQL, Oracle, DB2, and SQL Server.  These 
data storage systems have a number of features in common: 

• a simple call level interface or protocol (in contrast to a SQL binding) 

• ability to horizontally scale throughput over many servers,  

• efficient use of distributed indexes and RAM for data storage, and 

• the ability to dynamically define new attributes or data schema. 

The systems differ in other ways, and in this paper I contrast those differences.  They 
range in functionality from the simplest distributed hashing (analogous to memcached) to 
highly scalable partitioned tables, as supported by Google’s BigTable.  In fact, BigTable, 
memcached, and Amazon’s Dynamo provided a “proof of concept” that inspired many of 
the data stores we describe here: 

• Memcached demonstrated that in-memory indexes can be scalable, distributing 
and replicating objects over multiple nodes. 

• Dynamo pioneered the concept of “eventual consistency” as a way to achieve 
higher availability and scalability, and 

• BigTable demonstrated that persistent record storage could be scaled to thousands 
of nodes, a feat that all of the other systems aspire to. 

Good performance on a single multicore node is important, but I believe the most 
important feature of most NoSQL systems is “shared nothing” horizontal scaling, 
sharding and replicating over many servers.  This allows them to support a large number 
of simple read/write operations per second, as in Web 2.0 applications, for example.  This 
simple operation load is traditionally called OLTP (online transaction processing).  To 
date, RDBMSs have not provided good horizontal scaling for OLTP, but at the end of 
this paper we will look at RDBMSs making progress in that direction.  Note that data 
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warehousing RDBMSs provide horizontal scaling of complex joins and queries when the 
database is read-only or read-mostly, but that is not the focus of these new systems. 

In this document, I will simply refer to the new systems as “data stores”, because 
“NoSQL” does not seem an accurate description, and the term “database system” is 
widely used to refer to traditional DBMSs.  However, I will still use the term “database” 
to refer to the stored data in these systems.  All of the data stores have some 
administrative unit that you would call a database: data may be stored in one file, or in a 
directory, or via some other mechanism that defines the scope of data used by a group of 
applications.  Each database is an island unto itself, even if the database is partitioned and 
distributed over multiple machines: there is no “federated database” concept in these 
systems (as with some relational and object-oriented databases), allowing multiple 
separately-administered databases to appear as one.   

In addition to the “NoSQL” datastores, I will examine some new scalable relational 
database systems.  These systems may overcome the scalability shortcomings of 
traditional RDBMSs while retaining the simplicity of SQL and transactions.  If they 
succeed, the need for NoSQL systems would be much reduced. 

Data Models 
Unlike traditional DBMSs, the terminology used by the various data stores is often 
inconsistent.  For the purposes of this paper, we need a consistent way to compare the 
data models and functionality.   

All of the systems provide a way to store scalar values, like numbers and strings, as well 
as BLOBs.  Almost all of them provide a way to store compound or “complex” values as 
well, but they differ in their structure: 

• A “tuple” is a set of attribute-value pairs, analogous to a row in a relational table, 
where attribute names are pre-defined in a schema, and the values must be scalar.   
The values are referenced by attribute name, as opposed to an array or list, where 
they are referenced by ordinal position. 

• A “document” is a set of attribute-value pairs, where the values may be complex, 
and the attribute names are dynamically defined for each document at runtime.  A 
document differs from a tuple in that the attributes are not defined in a global 
schema, and complex or nested values are permitted. 

• An “extensible record” is a hybrid between a tuple and a document, where 
families of attributes are defined in a schema, but new attributes can be defined 
(within an attribute family) on a per-record basis. 

• An “object” is a set of attribute-value pairs, where the values may be complex 
values or pointers to other objects.  This is analogous to objects in programming 
languages, but without the procedural methods. 

Data Stores  
In this paper, I’m grouping the data stores according to their data model: 



1. Key-value Stores: These systems store values and an index to find them, based on 
a programmer-defined key. 

2. Document Stores: These systems store documents (as just defined). The 
documents are indexed and a simple query mechanism may be provided. 

3. Extensible Record Stores: These systems store extensible records that can be 
partitioned across nodes.  Some papers call these “column-oriented databases”. 

4. Relational Databases: These systems store (and index and query) tuples.  Some 
new RDBMSs provide horizontal scaling, so they are included in this paper.  

Data stores in these four categories are covered in the next four sections, respectively.   
Web sites for more information on these systems are listed in the tables at the end of the 
paper. 

2. Key-Value Stores 
The simplest data stores use a data model similar to the popular memcached distributed 
in-memory cache, with a single key-value index for all the data.  We’ll call these systems 
key-value stores.  Unlike memcached, these systems generally provide some persistence 
mechanism and additional functionality as well: replication, versioning, locking, 
transactions, sorting, and/or other features.  The client interface provides inserts, deletes, 
and index lookups.  Like memcached, none of these systems offer secondary indices or 
keys. 

Voldemort 
Voldemort is an advanced key-value store, written in Java.  It is open source, with 
substantial contributions from LinkedIn.  The code is mature enough that LinkedIn is 
using it internally.  Voldemort provides multi-version concurrency control for updates.  It 
updates replicas asynchronously, so it does not guarantee a consistent data. However, it 
supports optimistic locking for consistent multi-record updates, and can give an up-to-
date view if you read a majority of copies.  For the put and delete operations you can 
specify which version you are updating.  Vector clocks (from Dynamo) provide an 
ordering on versions. 

Voldemort supports automatic partitioning with consistent hashing.   Data partitioning is 
transparent.  Nodes can be added or removed from a database cluster, and Voldemort 
adapts automatically.  Voldemort automatically detects and recovers failed nodes. 

Voldemort can store data in RAM, but it also permits plugging in a different storage 
engine.  In particular, it supports a BerkeleyDB and Random Access File storage engine. 
Voldemort supports lists and records in addition to simple scalar values. 

Riak 
Riak is written in Erlang.  It was open-sourced by Basho in mid-2009.  Basho alternately 
describes Riak as a “key-value store” and “document store”.  I categorize it as an 
advanced key-value store, because it lacks key features of document stores, but it (and 
Voldemort, I believe) have more functionality than the other key-value stores: 



• Riak objects can be fetched and stored in JSON format, and thus can have 
multiple fields (like documents), and objects can be grouped into buckets, like the 
collections supported by document stores, with allowed and required fields 
defined on a per-bucket basis. 

• Riak does not support indices on any fields except the primary key, the only thing 
you can do with the non-primary fields is fetch and store them as part of a JSON 
object.  Riak lacks the query mechanisms of the document stores; the only lookup 
you can do is on primary key.  

Riak supports replication of objects and distribution (sharding) by hashing on the primary 
key.  It allows replica values to be temporarily inconsistent.  Consistency is tunable by 
specifying how many replicas (on different nodes) must respond for a successful read and 
how many must respond for a successful write.  This is per-read and per-write, so 
different parts of an applicatioon can choose different trade-offs. 

Like Voldemort, Riak uses a derivative of MVCC where vector clocks are assigned when 
values are updated.  Vector clocks can be used to determine when objects are direct 
descendents of each other or a common parent, so the Riak can often self-repair data that 
it discovers to be out of sync.   

The Riak architecture is symmetric and simple.  Consistent hashing is used to distribute 
data around a ring of nodes.  Using good sharding technique, there should be many more 
“virtual” nodes (vnodes) than physical nodes (machines).  Data hashed to vnode K is 
replicated on vnode K+1 … K+n where n is the desired number of extra copies (often 
n=1).  There is no distinguished node to track status of the system: the nodes use a gossip 
protocol to track who is alive and who has which data, and any node may service a client 
request.  Riak also includes a map/reduce mechanism to split work over all the nodes in a 
cluster. 

The storage part of Riak is “pluggable”: the key-value pairs may be in memory, in ETS 
tables, in DETS tables, or in Osmos tables.  ETS, DETS, and Osmos tables are all 
implemented in Erlang, with different performance and properties. 

One unique feature of Riak is that it can store “links” between objects (documents), for 
example to link objects for authors to the objects for the books they wrote.  Links reduce 
the need for secondary indices, but there is still no way to do range queries. 

The client interface to Riak is REST-based.  There is also a programmatic interface for 
Erlang. 

Here’s an example of a Riak object described in JSON: 

 
       { 
        "bucket":"customers", 
        "key":"12345", 
        "object":{ 
                  "name":"Mr. Smith", 
                  "phone":”415-555-6524” 
                 } 
        "links":[ 
                 ["sales","Mr. Salesguy","salesrep"], 
                 ["cust-orders","12345","orders"] 



                ] 
        "vclock":"opaque-riak-vclock", 
        "lastmod":"Mon, 03 Aug 2009 18:49:42 GMT" 
       } 

Note that the primary key is distinguished, while other fields are part of an “object” 
portion.  Also note that the bucket, vector clock, and modification date is specified as part 
of the object, and links to other objects are supported.   

Redis 
The Redis key-value data store is in an early stage of development.  It was mostly written 
by one person, but there are now a number of active contributors. 

Redis is written in C.  A Redis server is accessed by a wire protocol implemented in 
various client libraries (which must be updated when the protocol changes).  The client 
side does the distributed hashing over servers.  The servers store data in RAM, but data 
can copied to disk for backup or system shutdown.  System shutdown may be needed to 
add more nodes. 

Like the other key-value stores, Redis implements insert, delete and lookup operations.  
Like Voldemort, it allows lists and sets to be associated with a key, not just a blob or 
string.  It also includes list and set operations. 

Redis does atomic updates by locking, and does asynchronous replication.  It is reported 
to support 100K gets/sets per second. I believe this result is based on “batched” gets and 
sets (i.e., Redis’s set or list operations). 

Scalaris 
Scalaris is functionally similar to Redis.  It is written in Erlang at the Zuse Institute in 
Berlin, but is open source (like most of the systems we discussed).  In distributing data 
over nodes, it allows key ranges to be assigned to nodes, rather than simply hashing to 
nodes.  This means that a query on a range of values does not need to go to every node, 
and it also may allow better load balancing. 

Like the other key-value stores, it supports insert, delete, and lookup.  It does replication 
synchronously (both copies updated before completion) so data is guaranteed to be 
consistent.  Scalaris also supports transactions with ACID properties on multiple objects.  
Data is stored in RAM, but replication and recovery from node failures provides 
durability of the updates.   Nevertheless, a multi-node power failure would cause 
disastrous loss of data, and the virtual memory limit sets a maximum database size. 

I’m also concerned about the scalability of Scalaris.  Reads and writes must go to a 
majority of the replicas, and Solaris uses a ring of nodes, an unusual distribution and 
replication strategy that requires log(N) hops to read/write a key-value pair.  Scalaris 
contributors report a favorable benchmark comparison in a wikipedia implementation, 
but it seemed an apples-to-oranges comparison to me. 

Tokyo Tyrant 
Tokyo Tyrant seems to be a small-scale operation.  It was a sourceforge.net project, but 
the web site has recently been moved to one individual’s web site.  It is written in C. 



There are actually two parts: a front end called Tokyo Tyrant, and a multi-threaded back-
end server called Tokyo Cabinet.  There are six different variations for the Tokyo Cabinet 
server: hash indexes in memory or on disk, B-trees in memory or on disk, fixed-size 
record tables, and variable-length record tables.   The engines obviously differ in their 
performance characteristics, e.g. the fixed-length records allow quick lookups. There are 
slight variations on the API supported by these engines, but they all support common 
get/set/update operations.  The documentation is a bit confusing on what functionality is 
supported by what server, but they claim to support locking, ACID transactions, a binary 
array data type, and more complex update operations to atomically update a number of 
concatenate to a string.   

They also claim to support asynchronous replication with dual master or master/slave; I 
think this is implemented by the Tokyo Tyrant front end.  There is mention of failover, 
but it appears that recovery of the failed node is manual.  There does not appear to be 
automatic sharding; that could be done through modifications to Tokyo Tyrant to 
distribute over multiple servers. 

They claim 2M gets/puts per second; probably this was using the in-memory hash engine.   

Enhanced memcached 
The memcached open-source system has been enhanced by several companies, including 
Schooner and Northscale, to include features analogous to the other key-value stores: 
replication, high availability, dynamic growth, persistence, backup, and so on.  I may 
write more about these in a future version of this paper.  Gear6 was also developing an 
enhanced memcached, but I’m not sure of its status.  All of these systems are designed to 
be compatible with existing memcached clients; this is an attractive feature, given that 
memcached is many times more popular than any of the key-value stores I describe here.  

Summary 
• All these systems support insert, delete, and lookup operations. 

• All of these systems provide scalability through key distribution over nodes. 

• Voldemort, Riak, Tokyo Cabinet, and enhanced memcached can store data in 
RAM or on disk, with pluggable storage add-ons.  The others store data in RAM, 
and provide disk as backup, or rely on replication and recovery so that a backup is 
not needed. 

• Scalaris and enhanced memcached use synchronous replication, the rest use 
asynchronous. 

• Scalaris and Tokyo Cabinet implement transactions, while the others do not. 

• Voldemort uses multi-version concurrency control (MVCC), the others use locks. 

• Voldemort and Riak currently seem to be the most popular of the key-value 
stores, but memcached extensions might prove most popular over time, because 
of their backward compatibility. 



3. Document Stores 
As discussed in the first section, document stores support more complex data than the 
key-value stores.  The term “document store” is not ideal, because these systems store 
objects (generally objects without pointers, described in JSON notation), not necessarily 
documents.  Unlike the key-value stores, they generally support multiple indexes and 
multiple types of documents (objects) per database, and they support complex values. 

The document stores described here do not support locking nor synchronous copies to 
replicas, so there are no ACID transactional properties.  Some authors suggest a “BASE” 
acronym in contrast to the “ACID” acronym: 

• BASE = Basically Available, Soft state, Eventually consistent 

• ACID = Atomicity, Consistency, Isolation, and Durability 

The idea is that by giving up ACID constraints, you can achieve much higher 
performance and scalability.   However, the systems differ in how much they give up. 

SimpleDB 
SimpleDB is part of Amazon’s proprietary cloud computing offering, along with their 
Elastic Compute Cloud (EC2) and their Simple Storage Service (S3) on which SimpleDB 
is based.  SimpleDB has been around since 2007.  As the name suggests, its model is 
simple: SimpleDB has Select, Delete, GetAttributes, and PutAttributes operations on 
documents.  SimpleDB is simpler than the other document stores, as it does not allow 
complex values, e.g. nested documents. 

SimpleDB supports “eventual consistency” rather than transactions or synchronous 
replication.  Like some of the earlier systems discussed, SimpleDB does asynchronous 
replication, and some horizontal scaling can be achieve by reading any of the replicas, if 
you don’t care about having the latest version.  Writes do not scale, because they must go 
asynchronously to all copies of a domain.  If customers want better scaling, they must do 
so manually by sharding themselves.2   

Unlike key-value datastores, and like the other document stores, SimpleDB supports 
more than one grouping in one database: documents are put into domains, which support 
multiple indexes. You can enumerate domains and their metadata. Select operations are 
on one domain, and specify constraints on one attribute at a time, basically in the form: 

select <attributes> from <domain> where <list of attribute value contraints>   

Different domains may be stored on different Amazon nodes.   

Domain indexes are automatically updated when any document’s attributes are modified.  
It is unclear from the documentation whether SimpleDB automatically selects which 
attributes to index, or if it indexes everything.  In either case, the user has no choice, and 
the use of the indexes is automatic in SimpleDB query processing.   
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SimpleDB is a “pay as you go” proprietary solution from Amazon.  There are some built-
in constraints, some of which are quite limiting: a 10 GB maximum domain size, a limit 
of 100 active domains, a 5 second limit on queries, and so on.  Amazon doesn’t license 
SimpleDB source or binary code to run on your own servers.  SimpleDB does have the 
advantage of Amazon support and documentation. 

CouchDB 
CouchDB has been an Apache project since early 2008.  It is written in Erlang.  It seems 
to be the most popular of the open source data stores; there is even a book available on 
CouchDB (see http://books.couchdb.org/relax/). 

A CouchDB “collection” is similar to a  SimpleDB domain, although the CouchDB data 
model is richer.  Collections comprise the only schema in CouchDB, and secondary 
indexes must be explicitly created on fields in collections (and are automatically 
maintained by CouchDB).  Any document may have any fields, and the field values can 
be a scalar (text, numeric, or boolean), or complex (a document or list). 

Queries are done with what CouchDB calls “views”, which are defined with Javascript to 
specify field constraints.  The indexes are B-trees, so the results of queries can be ordered 
or value ranges.  Queries can be distributed in parallel over multiple nodes using a map-
reduce mechanism.  However, CouchDB’s view mechanism puts more burden on 
programmers than a declarative query language. 

Like SimpleDB, CouchDB achieves scalability through asynchronous replication, not 
through partitioning (sharding).  Reads can go to any server, if you don’t care about 
having the latest values, and updates must be propagated to all the servers.  However, that 
could change with a new project called CouchDB Lounge that provides partitioning on 
top of CouchDB, see: 

http:/tilgovi.github.com/couchdb-lounge/ 

Like SimpleDB, CouchDB does not guarantee consistency.  Unlike SimpleDB, each 
client does see a self-consistent view of the database because CouchDB implements 
multi-version concurrency control on individual documents, with a Sequence ID that is 
automatically created for each version of a document.  CouchDB will notify an 
application if someone else has updated the document since it was fetched.  The 
application can then try to combine the updates, or can just retry its update and overwrite. 

CouchDB also provides durability on system crash.  All updates (documents and indexes) 
are flushed to disk on commit, by writing to the end of a file.  (This means that periodic 
compaction is needed.)  By default, it flushes to disk after every document update.  
Together with the MVCC mechanism, CouchDB’s durability thus provides ACID 
semantics at the document level. 

Clients call CouchDB through a RESTful interface.  There are libraries for various 
languages (Java, C, PHP, Python, LISP, etc) that convert native API calls into the 
RESTful calls for you.   

CouchDB looks reasonable and mature.  It even has some primitive database 
adminstration functionality, with an admin user.  CouchDB’s asynchronous replication is 



useful.  However it lacks partitioning, and therefore lack of scalability for writes.  I am 
further investigating CouchDB Lounge, to see if that is a viable.   

MongoDB 
MongoDB is a GPL open source document store written in C++ and sponsred by 10gen.  
It has some similarities to CouchDB: it provides indexes on collections, it is lockless, and 
it provides a document query mechanism.  However, there are important differences: 

• MongoDB supports automatic sharding. 

• Replication in MongoDB is mostly used for failover, not for (dirty read) 
scalability.  MongoDB is thus somewhere in between CouchDB’s “eventual 
consistency” and the global consistency of a traditional DBMS: you can get local 
consistency on the up-to-date primary copy of a document. 

• MongoDB supports dynamic queries with automatic use of indices, like 
RDBMSs.  In CouchDB, data is indexed and searched by writing map-reduce 
views. 

• CouchDB provides MVCC on documents, while MongoDB provides atomic 
operations on fields.   

Atomic operations on fields are provided as follows: 

• The update command supports “modifiers” that facilitate atomic changes to 
individual values: $set sets a value, $inc increments a value, $push appends a 
value to an array, $pushAll appends several values to an array, $pull removes a 
value from an array, and $pullAll removes several values from an array.  Since 
these updates normally occur “in place”, they avoid the overhead of a return trip 
to the server. 

• There is an “update if current” convention for changing an object only if its value 
matches a given previous value. 

• MongoDB supports a findAndModify command to perform an atomic update and 
immediately return the updated document.  This is useful for impelmenting 
queues and other data structures requiring atomicity. 

MongoDB indices are explicitly defined using an ensureIndex call, and any existing 
indices are automatically used for query processing.  To find all products released last 
year costing under $100 you could write: 

db.products.find({released: {$gte: new Date(2009, 1, 1,)}, price {‘$lte’: 100},}) 

If indexes are defined on the queried fields, MongoDB will automatically use them.  
MongoDB also supports map-reduce, which allows for complex aggregations across 
documents. 

MongoDB stores data in a binary JSON-like format called BSON.  BSON supports 
boolean, integer, float, date, string and binary types.  Client drivers encode the local 
language’s document data structure (usually a dictionary or associative array) into BSON 
and send it over a socket connection to the MongoDB server (in contrast to CouchDB, 
which sends JSON as text over an HTTP REST interface).  MongoDB also supports a 



GridFS specification for large binary objects, eg. images and vidoes.  These are stored in 
chunks that can be streamed back to the client for efficient delivery. 

MongoDB supports master-slave replication with automatic failover and recovery.  
Replication (and recovery) is done at the level of shards.  Collections are automatically 
partitioned via a user-defined shard key.  Replication is asynchronous for higher 
performance, so some updates may be lost on a crash. 

Comparison of Operations 
 

 Terminology Create objects Query objects 

SimpleDB Domain 

Item 

Attribute 

PutAttributes(list of 
attribute/value pairs) 

Select from domain where 
<conjunction of conditions on 
attributes> 

CouchDB Database  

Document 

Field 

db.getDocument(key) 

Creates if doesn’t 
exist 

if (conjunction of conditions on 
fields) emit(key, list of field 
values) defines a “view” 

MongoDB Collection  

Document 

Key 

collection.save(object) 

Object defined in 
BSON 

collection.find( JSON-style 
document selector with 
comparison comparisons) 

Other recent document stores include Terrastore, which is built on the Terracotta 
distributed JVM clustering product, and OrientDB, an Apache-licensed project that 
supports ACID and SQL as well.  I plan to add these to this report in the future.   

Summary 
• The document stores are schema-less, except for attributes (which are simply a 

name, and are not pre-specified), collections (which are simply a grouping of 
documents), and the indexes defined on collections (explicitly defined, except 
with SimpleDB).   

• Unlike the key-value stores, the document stores provide a mechanism to query 
collections based on multiple attribute value constraints.  However, CouchDB 
does not support a non-procedural query language: it puts more work on the 
programmer and requires explicit utilization of indices. 

• The document stores do not use explicit locks, and have weaker concurrency and 
atomicity properties than traditional ACID-compliant databases.  They differ in 
how much concurrency control they do provide.  

• Riak and CouchDB are written in Erlang, with RESTfull call processing. I’m 
uncertain how performant Erlang and the REST protocol will be under heavy 
throughput. 

•  Documents can be distributed over nodes in all of the systems, but scalability 
differs.  All three systems can achieve scalability by reading (potentially) out-of-



date replicas.  MongoDB can obtain scalability without that compromise, and can 
scale writes as well, through automatic sharding and through atomic operations on 
documents.  CouchDB might be able to achieve this write-scalability with the 
help of the new CouchDB Lounge code. 

4. Extensible Record Stores 
The extensible record stores all seem to have been motivated by Google’s success with 
BigTable.  Their basic data model is rows and columns, and their basic scalability model 
is splitting both rows and columns over multiple nodes: 

• Rows are split across nodes through conventional sharding, on the primary key.  
They typically split by range rather than a hash function (this means that queries 
on ranges of values do not have to go to every node). 

• Columns of a table are distributed over multiple nodes by using “column groups”. 
These may seem like a new complexity, but column groups are simply a way for 
the customer to indicate which columns are best grouped together. 

These two partitionings (horizontal and vertical) can be used simultaneously on the same 
table. 

The column groups must be pre-defined with the extensible record stores.  However, that 
is not a big constraint, as new attributes can be defined at any time.  Rows are not that 
dissimilar from documents: they can have a variable number of attributes (fields), the 
attribute names must be unique, rows are grouped into collections (tables), and an 
individual row’s attributes can be of any type.3 

Although the systems were patterned after BigTable, none of the extensible records stores 
(indeed, none of the systems in this paper or perhaps the world) come anywhere near to 
BigTable’s scalability.  At Google, BigTable runs on tens of thousands of nodes with 
incredible transaction rates.  The best I’ve seen on any of the other systems is hundreds of 
nodes at much lower transaction rates, especially for writes.  Unfortunately, BigTable is 
not available for sale or as open source, it is only “for rent” (a subset as part of the 
Google App Engine), as far as I know.  Google’s sales model seems to be similar to 
Amazon’s with SimpleDB. 

It is worthwhile reading the BigTable paper for background on extensible record stores, 
and on the challenges with scaling to tens of thousands of nodes: 

http://labs.google.com/papers/bigtable.html 

HBase 
HBase is an Apache project written in Java.  It is patterned directly after BigTable: 

• HBase uses the Hadoop distributed file system in place of the Google file system. 
It puts updates into memory and periodically writes them out to files on the disk.   

                                                 
3 However, that CouchDB and MongoDB support complex types, such as nested objects, while the 
extensible record stores generally support only scalar types. 



• The updates go to the end of a data file, to avoid seeks.  The files are periodically 
compacted.  Updates also go to the end of a write ahead log, to perform recovery 
if a server crashes. 

• Row operations are atomic, with row-level locking and transactions. There is 
optional support for transactions with wider scope.  These use optimistic 
concurrency control, aborting if there is a conflict with other updates. 

• Partitioning and distribution are transparent; there is no client-side hashing or 
fixed keyspace as in some NoSQL systems.  There is multiple master support, to 
avoid a single point of failure.  MapReduce support allows operations to be 
distributed efficiently. 

• HBase uses B-tree indices, so range queries and sorting are fast. 

• There is a Java API, a Thrift API, and REST API.  JDBC and ODBC support has 
recently been added (see hbql.com).   

The initial prototype of HBase released in February 2007.  The support for transactions is 
attractive, and unusual for a NoSQL system.  I’m not sure of the performance of HBase, 
but with the right JVM, Java performance can be quite good.   

HyperTable 
HyperTable is written in C++.  Its was open sourced by Zvents.  It doesn’t seem to have 
taken off in popularity yet, but Baidu recently became a project sponsor, that should help. 

Hypertable is very similar to HBase and BigTable.  It uses column families that can have 
any number of column “qualifiers”. It includes timestamps on data, and uses MVCC.  It 
requires an underyling distributed file system such as Hadoop, and a distributed lock 
manager. Tables are replicated and partitioned over servers by key ranges.  Updates are 
done in memory and later flushed to disk. 

Hypertable supports a number of programming language client interfaces.  It uses a query 
language named HQL. 

Cassandra 
Cassandra is similar to the other extensible record stores in its data model and basic 
functionality.  It has column groups, updates are cached in memory and then flushed to 
disk, and the disk representation is periodically compacted.  It does partitioning and 
replication. Failure detection and recovery are fully automatic.  However, Cassandra has 
a weaker concurrency model than some other systems: there is no locking mechanism, 
and replicas are “eventually consistent”, being updated asynchronously.   

Like HBase, Cassandra is written in Java, and used under Apache licensing.  It was open 
sourced by Facebook in 2008.  It was designed by a Facebook engineer and a Dynamo 
engineer, and is described as a marriage of Dynamo and BigTable.  Cassandra is used by 
Facebook as well as other companies, so the code is reasonably mature. 

Client interfaces are created using Facebook’s Thrift framework: 

 http://incubator.apache.org/thrift/ 



Cassandra automatically brings new available nodes into a cluster, uses the phi accrual 
algorithm to detect node failure, and determines cluster membership in a distributed 
fashion with a gossip-style algorithm.  

Cassandra adds the concept of a “supercolumn” that provides another level of grouping 
within column groups, I’m not sure how useful this is.  Databases (called keyspaces) 
contain column families.  A column family contains either supercolumns or columns (not 
a mix of both).  Supercolunns contain columns.  As with the other systems, any row can 
have any combination of column values (i.e., rows are variable length and are not 
constrained by a table schema). 

Cassandra uses an ordered hash index, which should give most of the benefit of both has 
and B-tree indexes: you know which nodes could have a particular range of values 
instead of searching all nodes.  However, sorting would still be slower than with B-trees. 

Cassandra has reportedly scaled to about 100 machines in production at Facebook, 
perhaps more by now.  Cassandra seems to be gaining a lot of momentum as an open 
source project, as well. However, I’ve had difficulty finding public documentation on 
Cassandra, except for some articles and presentations.  I am researching further. 

Cassandra’s eventual-consistency model might not work for some applications.  
However, “quorum reads” do provide a way to get the latest data, and writes are atomic 
within a column family.  There is also some support for versioning and conflict 
resolution. 

Summary 
• The extensible record stores are patterned after BigTable.  They are all quite 

similar. 

• Cassandra focuses on “weak” concurrency (via MVCC) and HBase and 
HyperTable on “strong” consistency alternative (via locks and logging). 

• Cassandra’s backing by Facebook and Hypertable’s backing by Baidu might help 
them dominate, but it’s too early to tell. 

5. Scalable Relational Databases 
Unlike the other datastores, relational databases have a complete pre-defined schema, a 
SQL interface, and ACID transactions.  RDBMSs have not achieved the scalability of the 
some of the previously-described datastores.  To date, MySQL Cluster seems most 
scalable, linear up to about 50 nodes depending on application.  However, I believe it is 
possible for a relational database to provide more scalability, with certain provisos: 

• Small-scope operations: As we’ve noted, operations that span many nodes, e.g. 
joins over many tables, will not scale well with sharding. 

• Small-scope transactions: Likewise, transactions that span many nodes are going 
to be very inefficient, with the communication and two-phase commit overhead. 

I include scalable RDBMSs as a viable alternative in this paper.  A scalable RDBMS 
does not need to preclude larger-scope operations and transactions, but they must 



penalize a customer for these operations only if they use them.  In fact, scalable RDBMSs 
then have an advantage over the other datastores, because you have the convenience of 
the higher-level SQL language and ACID properties, but you only pay a price for those 
when they span nodes.4 

MySQL Cluster 
MySQL Cluster was developed about 10 years ago, and has been part of the MySQL 
release since 2004.  MySQL cluster works by replacing InnoDB with a distributed layer 
called NDB.  MySQL Cluster shards data over multiple database servers (this is a “shared 
nothing” architecture).  Every shard is replicated on two machines, to support recovery. 

Although MySQL Cluster seems to scale to more nodes than Oracle RAC, Parallel DB2, 
and other RDBMSs to date, it still runs into bottlenecks after a few dozen nodes.  Work 
continues on MySQL Cluster, so this may improve.  Much of the overhead may be in 
inter-node communication and synchronization. 

ScaleDB 
ScaleDB is a new derivative of MySQL underway.  Like MySQL Cluster, it replaces the 
InnoDB engine, and uses clustering of multiple servers to achieve scalability.  ScaleDB 
differs in that it requires disks shared across nodes.  Every server must have access to 
every disk.  This architecture has not worked well for Oracle RAC, so I am not 
optimistic. 

ScaleDB’s partitioning (sharding) over servers is automatic: more servers can be added at 
any time.  Server failure handling is also automatic.  ScaleDB redistributes the load over 
existing servers. 

ScaleDB supports ACID transactions and row-level locking.  It has multi-table indexing 
(which is possible due to the shared disk). 

Drizzle 
Another MySQL derivative underway is Drizzle.  It is derived from code forked off of 
MySQL 6.0 by Brian Akers, but some MySQL features are not supported (stored 
procedures, prepared statements, views, triggers, grants). 

Drizzle has been “stripped down” from full MySQL for performance, and shards data 
over multiple nodes, for scalability. 

The source code is available on http://launchpad.net/drizzle, but Drizzle is not yet 
completed: there is not yet an official first release, and it is not yet supported. 

NimbusDB 
NimbusDB is another new relational system, from Jim Starkey.  It uses MVCC and 
distributed object based storage.  SQL is the access language, with a row-oriented query 
optimizer and AVL tree indexes. 

                                                 
4 To be precise: in theory, it seems to me that RDBMS can provide SQL and transactions without penalty 
as long as they don’t span nodes.  However, this has not yet been proven in practice. 



MVCC provides transaction isolation without the need for locks allowing large scale 
parallel processing.  Data is horizontally segmented row-by-row into distributed objects, 
allowing multi-site, dynamic distribution. 

There is not much information available on NimbusDB yet, but there are slides at 

  http://www.nimbusdb.com/SpecialRelativity.pdf 

VoltDB 
VoltDB is a new RDBMS designed for high performance via a number of means: 

1. Tables are partitioned over multiple servers, and clients can call any server. 

2. The database is stored in memory, along with an undo log.  Disk waits are 
eliminated, because the data is always available. 

3. Transactions are encapsulated in stored procedures, and are executed in the same 
order on a node and on replica node(s).  Replicas provide protection from failure 
of an (in-memory) database node. 

4. Lock overhead is avoided, because only one process executes the (serialized) 
transactions on each partition.  

VoltDB is still under development.  I will report more on it when information becomes 
available. 

Summary 
• MySQL Cluster uses a “shared nothing” architecture for scalability.  It seems to 

be the most scalable solution at present. 

• ScaleDB, NimbusDB and Drizzle are in an early stage of development, I can’t say 
much about them yet. 

• VoltDB looks promising because of its bottom-up redesign for performance, but I 
likewise more information.  An early release is now available. 

• In theory, RDBMSs should be able to deliver scalability, but they haven’t gotten 
there yet. 

6. Some Use Cases 
No one of these data stores is best for all uses.  Your prioritization of features will be 
different depending on the application, as will the type of scalability required.  I assume 
you need some kind of scalability across machines: otherwise your best solution may be a 
traditional RDBMS running on a single server. 

In this section, I’ll give some examples of use cases that fit well with the different data 
store categories.  At the moment, I’ve only listed a few examples.  I’ll elaborate the use 
cases over time. 

http://www.nimbusdb.com/SpecialRelativity.pdf


Key-value Store Examples 
Key-value stores are generally good solutions if you have only one kind of object, and 
you only need to look objects up based on one attribute.  Key-value stores are generally 
the simplest to use, especially if you’re already familiar with memcached.   

For example, suppose you have a web application that does many RDBMS queries to 
create a tailored page when a user logs in.  Suppose it takes several seconds execute those 
queries, and the user’s data is rarely changed, or you know when it changes because 
updates go through the same interface.  Then you might want to store the user’s tailored 
page as a single object in a key-value store, represented in a manner that’s efficient to 
send in response to browser requests, and index these objects by user ID.  If you store 
these objects persistently, then you may be able to avoid RDBMS queries altogether, 
reconstructing the objects only when a user’s data is updated.  

Even in the case of an application like Facebook, where a user’s home page changes 
based on updates made by the user as well as updates made by others, it may be possible 
to execute RDBMS queries just once when the user logs in, and for the rest of that 
session show only the changes made by that user (not by other users).  Then, a simple 
key-value store could still be used. 

You could use key-value stores to do lookups based on multiple attributes, by creating 
additional key-value indexes that you maintain yourself.  However, at that point you 
probably want to move to a document store. 

Document Store Examples 
If you have multiple different kinds of objects (say, in a DMV application with vehicles 
and drivers), and you need to look up objects based on multiple fields (for example, a 
driver’s name, license number, owned vehicle, or birth date), then you’ll want a 
document store. 

Another factor to consider is what level of concurrency guarantees you need.  If you can 
tolerate the “eventually consistent” model and limited atomicity, the document stores 
should work well for you.  That might be the case in the DMV application, e.g. you don’t 
need to know if the driver has new traffic violations in the past minute, and it would be 
quite unlikely for two DMV offices to be updating the same driver’s record at the same 
time.  But if you require that data be accurate and atomically consistent, e.g. if you want 
to lock out logins after three incorrect attempts, then you can’t afford to be even a few 
seconds out of date.  In that case, you need to use document stores carefully, reading 
enough replicas to guarantee that you have the latest value.   

Extensible Record Store Examples 
The use cases for extensible record stores are similar to those for document stores: 
multiple kinds of objects, with lookups based on any field.  However, the extensible 
record store projects generally seem to be aimed at higher throughput, and may provide 
stronger concurrency guarantees, at the cost of slightly more complexity than the 
document stores. 



Suppose you are storing customer information for an eBay-style application, and you 
want to partition your data both horizontally and vertically: 

• You might want to cluster customers by country, so that you can efficiently search 
all of the customers in one country. 

• You might want to separate the rarely-changed “core” customer information such 
as customer addresses and email addresses in one place, and put certain 
frequently-updated customer information (such as current bids in progress) in a 
different place, to improve performance. 

Although you could do this kind of horizontal/vertical partitioning yourself on top of a 
document store by creating multiple collections for multiple dimensions, the partitioning 
is most easily achieved with an extensible record store like HBase or HyperTable. 

Scalable RDBMS Examples 
If you need to query across types or if you sometimes need transactions that span 
multiple records, you’ll probably want an RDBMS.  If you need scalability across dozens 
of machines right now, your best solution would probably be MySQL Cluster. 

As an example, suppose in the DMV application that you need to be able to find all of the 
red cars that are registered in San Francisco that are owned by someone aged 30 to 50 
years who works in Santa Clara County.  With queries like these, a scalable RDBMS is 
the most convenient solution.   

As another example, you might require or want to use some existing tools based on SQL, 
such as Crystal Reports.  Again, a scalable RDBMS is probably the best solution, 
assuming you can achieve the performance you require with a system like MySQL 
Cluster. 

Note that if more scalable RDBMSs are successful, then they may provide a better 
solution for an even wider range of applications: the need for NoSQL solutions could be 
obviated. 

7. Overall Summary 
Here’s a table listing storage models, concurrency models, and other aspects of these 
systems.  

 
 Conc 

Control 
Data 
Storage 

Repli-
cation5

Tx6 Comments 

Redis Locks RAM Async N  
Scalaris Locks RAM Sync L  
Tokyo Locks RAM or Async L B-trees and hash. Manual 

                                                 
5 Replication indicates whether the mirror copies are always in sync, or are updated asynchronously. 
BigTable updates georgraphically remote copies asynchronously (which is really the only practical 
solution). 
6 An “L” indicates transactions limited to a single node or record. 



disk sharding. 
Voldemort MVCC RAM  

or BDB 
Async N Open source Dynamo clone. 

SimpleDB None S3 Async N No automated sharding, 
scales by replication. 

Riak MVCC Pluggable Async N No indices nor queries on 
secondary key fields. 

MongoDB Field- 
level 

Disk Async N JSON queries.  Sharding new. 

Couch DB MVCC Disk Async N No sharding, possibly 
remedied by Lounge. 

HBase Locks Hadoop Async L B-trees. Based on Hadoop, 
logging. BigTable clone. 

HyperTable Locks Files Sync L Very similar to BigTable. 
Cassandra MVCC Disk Async L Facebook spinoff.  BigTable 

clone except MVCC. 
BigTable Locks+ 

stamps 
GFS Sync+ 

Async 
L B-trees. Sync locally, async 

remotely. 
MySQL 
Cluster 

Locks Disk Sync Y Limited scalability.  Replaces 
InnoDB with “NDB”. 

ScaleDB Locks Disk Sync Y Shared disk.  Also replaces 
InnoDB. 

Drizzle Locks Disk Sync Y Under development. Also 
replaces InnoDB. 

NimbusDB MVCC Disk Sync Y Under development. 
VoltDB Lock- 

equiv 
RAM Sync Y Under development.  

 

Here is some more information on the systems and their sources, including a rough 
measure of popularity on the net (thousands of hits on Google as of January) and a 
measure of code maturity (my judgment based on developer comments): 

 
 Mature K-hits License Lang Web site for more information 
Redis Low 200 BSD C code.google.com/p/redis 
Scalaris Med 200 Apache Erlg code.google.com/p/scalaris 
Tokyo Low 100 GPL C tokyocabinet.sourceforge.net 
Voldemort Med 100 None Java project-voldemort.com 
SimpleDB High 300 Prop N/A amazon.com/simpledb 
Riak Med 400 Apache Erlg riak.basho.com 
MongoDB Med 100 GPL C++ mongodb.org 
Couch DB High 1M Apache Erlg couchdb.apache.org 
HBase Med 500 Apache Java hadoop.apache.org/hbase 
HyperTable Med 200 GPL C++ hypertable.org 
Cassandra Med 600 Apache Java incubator.apache.org/cassand



ra 
BigTable High 1M+ Prop C++ labs.google.com/ 

papers/bigtable.html 
MySQL 
Cluster 

High 1M+ GPL C++ mysql.com/cluster 

ScaleDB Med 100 GPL C++ scaledb.com 
Drizzle Low 200 GPL C++ launchpad.net/drizzle 
VoltDB Low 20 GPL Java+ voltdb.com 

 

I believe that a few of these systems will gain critical mass and key players, and will pull 
away from the others by next year.  At that point, users and open source contributors will 
likely migrate to those players. 
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