

MySQL Cluster 7.0 & 7.1:
Architecture and New Features

A MySQL® Technical White Paper by Oracle

April 2010

Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved.

Table of Contents

1 INTRODUCTION .. 3

2 NEW FEATURE OVERVIEW ... 3

3 MYSQL CLUSTER ARCHITECTURE OVERVIEW .. 3

4 ENHANCED SCALABILITY AND PERFORMANCE ... 10

4.1 Multi-Threaded Data Nodes .. 10
4.1.1 Benefits .. 11
4.1.2 Configuring NDB Data Nodes to be Multi-Threaded .. 12

4.2 On-Line Add Node ... 12

4.3 Multi-Threaded Disk Data File Access ... 16

4.4 Improved Large Record Handling.. 17

5 WINDOWS PLATFORM ... 17

6 SIMPLIFIED CLUSTER MONITORING AND MANAGEMENT .. 18

6.1 ndbinfo Data Node Statistics ... 18
6.1.1 ndbinfo.counters ... 18
6.1.2 ndbinfo.logbuffers .. 19
6.1.3 ndbinfo.logspaces ... 20
6.1.4 ndbinfo.memoryusage .. 20
6.1.5 ndbinfo.nodes ... 21
6.1.6 ndbinfo.transporters .. 21

6.2 MySQL Cluster Manager .. 22

6.3 Snapshot Backup Options for MySQL Cluster ... 22

6.4 Configuration Data Cached ... 24

6.5 Transactions for schema changes.. 25

7 CONNECTORS .. 25

7.1 MySQL Cluster Connector for Java ... 25

7.2 High Availability Directory Back-End ... 26

8 CONCLUSION .. 27

9 LINKS AND REFERENCES ... 28

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 2 of 28

1 Introduction
MySQL Cluster is a scalable, high-performance, clustered database, originally developed for some of
the world’s most demanding applications found in the telecommunications industry. Often these
telecom applications required that the database’s availability exceed 99.999%.

Since MySQL Cluster’s introduction in 2004, new feature sets have been steadily introduced into the
product. This has broadened its appeal for new application use-cases, markets and industries.
MySQL Cluster is now being adopted not only as a database for traditional telecom applications like,
HLR (Home Locator Registry) or SLR (Subscriber Locator Registry), it is now also being widely
deployed for Service Delivery Platforms, Value-Added Services, VOIP, web applications, internet
billing, session management, eCommerce sites, search engines and traditional back office
applications. Industry use extends to include web, enterprise and government organizations.

With the release of MySQL Cluster 7.0 & 7.1, many new features and improvements have been
introduced to the already popular MySQL Cluster 6.3. In this paper we will explore these new features
which have been introduced in MySQL Cluster since the MySQL Cluster 6.3 release so you can better
understand the opportunities and benefits using MySQL Cluster 7.0/7.1 can bring to your high
availability applications and services.

2 New Feature Overview
The following set of enhancements does not represent the complete list of new features introduced in
this latest version of MySQL Cluster. Please see the documentation for the full feature set:
http://dev.mysql.com/doc/#cluster

Feature Category Release
Multi-Threaded Data Node Scalability/Performance 7.0
On-Line Add Node Scalability/Performance 7.0
Multi-Threaded Disk Data File Access Scalability/Performance 7.0
Improved Large Record Handling Scalability/Performance 7.0
Windows Platform Platform 7.0 & 7.1
Carrier-Grade Directory Back-End Connectors 7.0
Snapshot Options for MySQL Cluster Monitoring & Management 7.0
Configuration data cached Monitoring & Management 7.0
Transactions for schema changes Monitoring & Management 7.0
ndbinfo – statistic reporting Monitoring & Management 7.1
MySQL Cluster Manager Monitoring & Management 7.1
MySQL Cluster Connector for Java Connectors 7.1

3 MySQL Cluster Architecture Overview
Before embarking on a technical examination of MySQL Cluster’s new features, it makes sense to
quickly review the product’s architecture and how it functions.

MySQL Cluster is a high availability database built using a unique shared-nothing architecture and a
standard SQL interface. The system consists of a number of communicating processes, or nodes that
can be distributed across hosts to ensure continuous availability in the event of server or network
failure. MySQL Cluster uses a storage engine, consisting of a set of data nodes to store data which

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 3 of 28

http://dev.mysql.com/doc/#cluster

can be accessed using standard SQL with MySQL Server, through the NDB API for real-time access
or via a number of other access methods (such as LDAP or JPA) that access the NDB API.

The NDB API is an object-oriented application programming interface for MySQL Cluster that
implements indexes, scans, transactions, and event handling. NDB transactions are ACID-compliant
in that they provide a means to group together operations in such a way that they succeed (commit)
or fail as a unit (rollback).

MySQL Cluster tolerates failures of several data nodes and reconfigures itself on the fly to mask out
these failures. The self-healing capabilities, as well as the masking of data partitioning from the
application, result in a simple programming model that enables database developers to easily include
high availability in their applications without complex low-level coding.

MySQL Cluster consists of three kinds of nodes:

1. Data Nodes store all the data belonging to the MySQL Cluster. Data is instantaneously replicated
between these nodes to ensure it is continuously available in the event one or more nodes fail. These
nodes also manage database transactions. Increasing the number of replicas yields additional data
redundancy. Applications utilizing the NDB API access the Data Nodes directly rather than through a
MySQL Server.

2. Management Server Nodes handle system configuration at startup and are leveraged when there
is a change to the cluster. At a minimum, just one Management Node can be configured but for
maximum availability you should run additional nodes. A management node is required when starting,
stopping or reconfiguring the cluster; it also acts as the arbitrator in certain data node failure scenarios
to ensure that a ‘split brain’ scenario is avoided.

3. MySQL Server Nodes enable SQL access to the clustered Data Nodes. This provides developers
a standard SQL interface to program against. MySQL Server in turn, handles sending requests to the
Data Nodes, thus eliminating the need for cluster specific, low-level programming within the
application. Additional MySQL Server Nodes are typically added in order to increase performance.
This arrangement naturally lends itself to an implementation of the Scale-out methodology for
increasing scalability, capacity and performance.

Applications that need the maximum real-time performance from the MySQL Cluster database should
use the NDB API directly rather than going through a MySQL Server. This C++ API is described in
detail in the MySQL Cluster API Developer Guide; available at: http://dev.mysql.com/doc/#cluster

There are also additional connector technologies for applications to use that access the data through
the NDB API, providing ultimate developer independence and the easy integration of MySQL Cluster
to a broad range of web and enterprise applications while benefiting from the performance benefits of
the NDB API.

The database is internally broken down into partitions so that it can be split amongst Data Nodes. To
avoid a single point of failure, two or more Data Nodes hold all of the data for a particular partition and
they are referred to as a Node Group.

Below in Figure 1 is an illustration of a basic MySQL Cluster configuration consisting of:

• One MySQL Server Node
• One Management Server Node
• Two Data Nodes (forming one Node Group) for extra availability

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 4 of 28

http://dev.mysql.com/doc/#cluster

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 5 of 28

Figure 1 Basic MySQL Cluster Configuration

In Figure 2 we illustrate a MySQL Cluster configuration in which we have employed Scale-out in order
to increase performance & capacity. We have done so by adding two additional MySQL Server
Nodes, as well as 2 extra data nodes and an additional Management Server for process redundancy.
This configuration now consists of:

• Three MySQL Server Nodes
• Two Management Server Nodes (added for redundancy of maintenance operations rather than

capacity or performance)
• Four Data Nodes (forming two Node Groups) for extra performance, capacity and availability

MySQL
Server
MySQL
Server

Data
Node
Data
Node Management

Server
Management

Node

NDB APINDB API

MySQL Cluster

Data
Node
Data
Node

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 6 of 28

Figure 2 Scaling Out SQL Capacity & Performance

All MySQL Servers in a MySQL Cluster are connected to all Data Nodes as illustrated in
Figure 2. All updates made by the MySQL Servers are stored in the data nodes and become
immediately visible to other connected MySQL Servers at transaction commit time giving a single
database image. This means that as soon as a transaction has been executed on one MySQL
server, the result is visible through all MySQL servers in the Cluster.

The node-based architecture of MySQL Cluster has been carefully designed for high availability:

• If a Data Node fails, then the MySQL Server can use any other Data Node in the node group to
execute transactions.

• The data within a Data Node is replicated on all nodes within the Node Group. If a Data Node
fails, then there is always at least one other Data Node storing the same information.

• Duplicate Management Server Nodes can be deployed so that no management or arbitration
functions are lost if a single Management Server fails.

Designing the cluster in this way makes the system reliable and highly available since single points of
failure have been minimized. Any node can be lost without it affecting the system as a whole. An
application can, for example, continue executing even though a Data Node is down provided that
there are one or more surviving nodes in its node group. Techniques used to increase the reliability
and availability of the database system include:

• Data is synchronously replicated between all data nodes in the node group. This leads to very
low fail-over times in case of node failures.

• Nodes execute on multiple hosts, allowing MySQL Cluster to operate even during hardware
failures.

• Nodes are designed using a shared-nothing architecture. Each Data Node has its own disk and
memory storage.

MySQL
Server
MySQL
Server

Data
Node
Data
Node

Data
Node
Data
Node

NDB
Storage Engine

Management
Server

Management
Node

NDB APINDB API

MySQL Cluster

Data
Node
Data
Node

Data
Node
Data
Node

MySQL
Server
MySQL
Server

MySQL
Server
MySQL
Server

Management
Server

Management
Node

• Single points of failure have been minimized. Any one (in some cases more) node can be lost
without any loss of data and without stopping applications using the database. Similarly, the
network can be engineered such that there is no single point of failure in the interconnects.

In addition to the site-level high-availability achieved through the redundant architecture of a Cluster,
geographic redundancy can be achieved using asynchronous replication between 2 or more Clusters.

Using row-based replication you have the ability to replicate from a MySQL Cluster to another MySQL
Cluster or to other non-Cluster MySQL databases. It is possible to create the following master/slave
configurations:

• MySQL Cluster to MySQL Cluster
• MySQL Server (MyISAM, InnoDB, etc) to MySQL Cluster
• MySQL Cluster to MySQL Server (MyISAM, InnoDB, etc)

In addition, it is possible for a single MySQL Cluster database to be replicated to one or more MySQL
Cluster deployment as well as to one or more databases using different storage engines.

If the goal is to achieve the highest possible availability, a Cluster to Cluster replication configuration
with redundant replication channels, will be the ideal.

Some popular reasons for implementing replication include:

• Replication to achieve higher availability within the data center or across a geographic WAN
• A replicated database for fail-over
• Provide lower latency data access in different geographies.
• A replicated database for complex data analysis that mustn’t impact the performance of the

main, real-time production database

First, let’s review some basics about MySQL replication regardless if you use MySQL Cluster or not.
Replication includes a master server and a slave server, the master being the source of the
operations and data to be replicated and the slave being the recipient of these. This configuration is
illustrated in Figure 3. A single server can be a Master or a Slave at different times, and in some
topologies, it is a Master and Slave at the same time.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 7 of 28

Web/App
Server

Web/App
Server

Writes & Reads

MySQL Master

I/O
Thread

SQL
Thread

WritesWrites

relay
binlog

MySQL Slave

mysqld

data

index &
binlogs

mysqld

databinlogReplication

Figure 3 Generic MySQL Replication

Although the implementation of replication within MySQL Cluster is architecturally similar, there are a
few differences which should be explained. A MySQL Cluster to MySQL Cluster replication
configuration is illustrated below in Figure 4:

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 8 of 28

Web/App
Server

Web/App
Server

Writes & ReadsWrites & Reads

MySQL Master

mysqld

index &
binlogs

Data NodesData Nodes

MySQL Cluster

NDB

binlog_index

apply_status

I/O
Thread

SQL
Thread

WritesWrites

relay
binlog

MySQL Slave

mysqld

binlog

MySQL Cluster

Data NodesData Nodes
NDB

Replication

Figure 4 MySQL Cluster Geographic Replication

In the above configuration, the replication process is the one in which consecutive states of a master
cluster are logged and saved to a slave cluster. This process is achieved by a thread known as the
NDB binlog injector thread, which runs on each MySQL server and creates a binary log (also known
as a binlog). The NDB binlog injector thread guarantees that all changes in the cluster producing the
binary log - and not just those changes that are effected via the MySQL Server - are inserted into the
binary log in the correct order. This is important because the NDB storage engine supports the NDB
API which allows you to write applications that interface directly with the NDB kernel, bypassing the
MySQL Server and normal SQL syntax.

The diagrams show a single MySQL Server (mysqld) acting as the SQL front-end as well as the
replication master.

MySQL Server supports Statement Based Replication (SBR) and Row Based Replication (RBR);
MySQL Cluster asynchronous replication always uses RBR.

Please refer to the “MySQL Cluster Reference Guide” for more details on advanced features of
Cluster replication – including different Master/Slave topologies (such as active-active), conflict
detection and resolution, multiple replication channels, synchronizing of the binlog with online Cluster
backup.

Not all data needs to have the same read/write performance possible using MySQL Cluster in-
memory storage. For that subset of data, MySQL Cluster can store it on disk rather than in-memory,
giving you the ability to create even larger database clusters and still manage them effectively. Note
that with “in-memory” data, changes are asynchronously checkpointed to disk to ensure that the data
can be recovered even if the memory copy is lost for all of the data nodes in a node group.

Data that does not necessarily demand the very high performance characteristics of RAM-based data
will be the best candidates for leveraging disk-data. Also, for those who have run into “storage
ceilings” because of the hard limits imposed by the operating system or hardware migrating the in-

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 9 of 28

memory data to disk or developing your new applications with MySQL Cluster’s data on disk can be a
very good solution.

Applications connecting to the MySQL Cluster using a MySQL Server or the NDB API gain the
following benefits:

• Data independence, meaning that the application can be written without requiring knowledge of
the physical storage of the data. Data is stored in a storage engine which handles all of the
low level details such as data replication and automatic fail over.

• Network and distribution transparency, which means that the application program depends on
neither the operational details of the network, nor the distribution of the data on the data nodes,

• Replication and partition transparency, meaning that applications can be written in the same
way regardless of whether the data is replicated or not, and independent of how the data is
partitioned.

In addition, using the NDB API gives the advantages of:

• Increased performance
• Reduced, predictable latency

Connecting through the MySQL Server provides:

• A standard SQL interface that is easy for developers and DBAs to use without requiring any

low level programming to achieve high availability.

These features make it possible for MySQL Cluster to dynamically reconfigure itself in case of failures
without the need for custom coding in the application program.

4 Enhanced Scalability and Performance
As Telecommunications, Enterprise and Government organizations deliver new services to a host of
new users and devices across both wired and wireless networks, previously unforeseen demands
have been placed on underlying database platforms. For example, much higher update rates driven
by presence and location based services are common, coupled with much larger database sizes
driven by complex, composite on-line services. Availability and latency requirements become ever
more stringent and the ability to scale instantly to handle massive demand is paramount.

This ability to deploy a database with extremely high throughput and low latency while also being able
to start with a small, inexpensive system and then scale up is a key feature of MySQL Cluster and it
remains a central focus for MySQL Cluster 7.0 & 7.1 releases.

4.1 Multi-Threaded Data Nodes

MySQL Cluster has always been highly effective at “scaling-out” – for example, you can start on small
uni-processor COTS (Commodity Off The Shelf) Cluster hosts, adding nodes incrementally as your
workload grows, all the while keeping acquisition costs ultra-low.

MySQL Cluster 7.0 adds a new option - “scaling-up” by allowing the data nodes to better exploit
multiple threads, cores or CPUs in a single system. Each NDB data node is able to make effective
use of up to 8 CPU cores/threads. Data is partitioned among a number of threads within the NDB
process; in effect duplicating the Cluster architecture with the data node. This design maximizes the
amount of work that can be done independently by threads and minimizes their communication.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 10 of 28

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 11 of 28

This is achieved by allowing the Local Query Handler to run in a multi-threaded mode while other key
activities (Transaction Coordination, replication, IO and transporter) are run in separate threads. Each
of the LQH threads is responsible for one primary sub-partition (a fraction of the partition that a
particular data node is responsible for) and one replica sub-partition (assuming that NoOfReplicas is
set to 2). The Transaction Coordinator for an NDB data node is responsible for routing requests to the
correct LQH thread.
Figure 5 illustrates this for an 8 core system where 4
threads are used for running instances of the Local Query
Handler (LQH).

The Transaction Coordinator handles co-ordination of
transactions and timeouts; it serves as the interface to the
NDB API for indexes and scan operations.

The Access Manager handles hash indexes of primary
keys providing speedy access to the records.

The Tuple Manager handles storage of tuples (records)
and contains the filtering engine used to filter out records
and attributes.

The 4 LQH threads are in turn allocated work by the
single Transaction Coordinator (TC) thread. The Access Manager (ACC) and the Tuple Manager
(TUP) are run within each of the LQH threads.

4.1.1 Benefits

Multi-threaded/core/CPU systems have become common-place, even a low-end PC now comes with
2-4 cores and higher end systems have many more. In order to take advantage of those resources in
earlier releases, the system had to be set up to run more than one NDB data node instance on the
same host which has a number of effects:

• Each of the instances comes with a memory overhead which consumes that valuable
resource, leaving less for storing application data. Other inefficiencies come from more
process scheduling and open files and sockets which impact performance.

• Extra complexity from having to manage an increased number of data nodes
• There is a limit to the number of data nodes supported in a Cluster (currently 48) and this

applies to the total number of data node instances rather than the number of physical hosts
that they run on.

If building a new system then this feature means that less hardware will be needed to deliver the
required performance (and possibly capacity). This represents an obvious saving in hardware
purchase costs and data center space and power consumption but it also reduces software license
and support fees as well as maintenance complexity/cost leading to a significant reduction in TCO.

In an existing system, you can use this extra bandwidth to store more data without buying new
hardware; additionally you can remove the workaround of running multiple NDB data node instances
on the same machine.

This feature can deliver 4x1 more operations per second than previous Cluster releases on the latest
multi-core hardware. Users can support larger and more complex workloads with 4x fewer data
nodes and less hardware resource. This enables users to decrease capital hardware costs, reducing

1 http://www.mysql.com/why-mysql/benchmarks/mysql-cluster/

Figure 5 Multi-Threaded Data Node

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 12 of 28

energy consumption of the Cluster by 3x2 and rack space by 4x3, while simplifying on-going
operations.

4.1.2 Configuring NDB Data Nodes to be Multi-Threaded

ndbmtd is a multi-threaded version of ndbd, the process that is used to handle all the data in tables
using the NDB data node. ndbmtd is intended for use on host computers having multiple CPU
cores/threads.

In almost all ways, ndbmtd functions in the same way as ndbd; and the application therefore does not
need to be aware of the change. Command-line options and configuration parameters used with ndbd
also apply to ndbmtd. ndbmtd is also file system-compatible with ndbd. In other words, a data node
running ndbd can be stopped, the binary replaced with ndbmtd, and then restarted without any loss of
data. This all makes it extremely simple for developers or administrators to switch to the multi-
threaded version.

Using ndbmtd differs from using ndbd in two key respects:

• You must set an appropriate value for the MaxNoOfExecutionThreads configuration
parameter in the config.ini file. If you do not do so, ndbmtd runs in single-threaded mode —
that is, it behaves like ndbd.

• Trace files are generated for critical errors in ndbmtd processes in a somewhat different
fashion from how these are generated by ndbd failures.

Number of execution threads. The MaxNoOfExecutionThreads configuration parameter is used to
determine the number of execution threads spawned by ndbmtd. Although this parameter is set in
[ndbd] or [ndbd default] sections of the config.ini file, it is exclusive to ndbmtd and does not apply to
ndbd. This parameter takes an integer value from 2 to 8 inclusive. Generally, you should set this to
the number of CPU cores/threads on the data node host, as shown in the following table:

Number of cores Recommended MaxNoOfExecutionThreads Value
2 2
4 4

8+ 8

Clearly, the performance improvement realized by this capability will be partly dependent on the
application. As an extreme example, if there is only a single application instance which is single
threaded, sending simple read or write transactions to the Cluster then no amount of parallelism in the
data nodes can speed it up. So while there is no requirement to change the application, some re-
engineering may help to achieve the best improvement.

4.2 On-Line Add Node

One of the most compelling attributes of MySQL Cluster is the ability to start with a small, low cost
Cluster and then scale-out by adding more blades or servers as the capacity and/or performance
demands grow over time. This growth could be driven by more users of the application, new

2 Based on 4 x Sun Fire x4150 servers, equipped each equipped with 1 x dual core Intel Xeon 5260 3.33GHz processor (8
cores total) consuming 236 watts each, or 944 watts total versus 1 x Sun Fire x4150 Server, equipped with 2 x quad core Intel
Xeon 5460 3.16GHz processors (8 cores total), consuming 308 watts. Each server equipped with 4 x 4GB DIMMs, 2 x 146GB
PCI-E cards, running at 50% utilization. Power consumption estimated from x4150 power calculator on January 27th 2009:
http://www.sun.com/servers/x64/x4150/calc/
3 Sun Fire x4150 = 1 Rack Unit high. 4 x single processor servers requiring 4 RU vs 1 x dual processor server requiring 1RU
of rack space

applications sharing the same Cluster database or extra functionality/complexity being added to the
original application.

Prior to MySQL Cluster 7.0, it was not possible to add node groups to an existing, in-service Cluster
(in reality, there existed workarounds if you used Geographic Redundancy but they added complexity
to the process and not every Cluster deployment has a redundant site).

Beginning with MySQL Cluster 7.0, it is possible to add new node groups (and thus new data nodes)
to a running MySQL Cluster without shutting down and reloading the cluster. Additionally, a new
capability has been added to repartition the data (moving a subset of the data from the existing node
groups to the new one).

This section will step through an example of extending a single node group Cluster by adding a
second node group and repartitioning the data across the 2 node groups. Figure 6 shows the original
system.

Node Group

JapanTanizakiJunichiro4

GermanyGoetheJohann3

USAHemingwayErnest2

FranceCamusAlbert1

countrylnamefnameauthid (PK)

Application

“author” Table

Figure 6 Initial Configuration - Single Node Group

This example assumes that the 2 servers making up the new node group have already been
commissioned and focuses on the steps required to “bring them into the Cluster”.

Step 1: Edit config.ini on all of the management servers as shown in Figure 7.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 13 of 28

Node Group

Application
Management Server

192.168.0.3 192.168.0.4

[ndbd]

Id = 3
Hostname = 192.168.0.3

[ndbd]
Id = 4
Hostname = 192.168.0.4

config.ini

Figure 7 Update config.ini on all management servers

Step 2: Restart the management server(s), existing data nodes and MySQL Servers.

Figure 8 illustrates how to restart the management server and existing data nodes. Note that you will
be made to wait for each restart to be reported as complete before restarting the next node so that
service is not interrupted.

Node Group

Application
Management Server

ndb_mgm> 101 STOP

shell> db_mgmd -f config.ini –reload

<WAIT>

ndb_mgm> 1 RESTART

<WAIT>
ndb_mgm> 2 RESTART

Node 1 Node 2

Node 101

Figure 8 Rolling Restart of Management and Data Nodes

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 14 of 28

In addition, all of the MySQL Server nodes that access the cluster should be restarted. That would be
done by issuing the following commands (exact syntax would be dependent on how much information
has been included in the my.cnf file) on each server:

shell> mysqladmin -uroot -ppassword shutdown
shell> mysqld_safe

If creating a new Cluster with the expectation that it will grow in the future then you can include data
for the (at that time) non-existent data nodes in the config.ini file (refer to the MySQL Cluster
Reference Guide for details). As there is no service impact from the rolling restart, you may decide to
not worry about this advance preparation.

Step 3: Create the new node group

You are now ready to start the 2 new data nodes and then create the node group from them and so
include them in the Cluster as shown in Figure 9. Note that in this case, there is no need to wait for
Node 3 to start before starting Node 4 but you must wait for both to complete before creating the node
group.

Node Group

Application
Management Server

shell> ndbd --initial

Node 1 Node 2 Node 3 Node 4

shell> ndbd --initial

ndb_mgm> CREATE NODEGROUP 3,4

Figure 9 Start the new data nodes and add as node group in Cluster

Step 4: Repartition Data

At this point the new data nodes are part of the Cluster but all of the data is still held in the original
node group (Node 1 and Node 2). Note that once the new nodes are added as part of a new node
group, new tables will automatically be partitioned across all nodes.

Figure 10 illustrates the repartitioning of the table data (disk or memory) when the command is issued
from a MySQL Server. Note that the command should be repeated for each table that you want
repartitioning.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 15 of 28

Node Group

Application
MySQL Server

Node 1 Node 2 Node 3 Node 4

mysql> ALTER

ONLINE TABLE author
REORGANIZE
PARTITION;

Node Group

JapanTanizakiJunichiro

GermanyGoetheJohann3

USAHemingwayErnest2

FranceCamusAlbert1

countrylnamefnameauthid (PK)

JapanTanizakiJunichiro4

USAHemingwayErnest2

countrylnamefnameauthid (PK)

4

Figure 10 Data Repartitioned across all available node groups

It should be noted that the ONLINE REORGANIZE and the add CREATENODEGROUP operations
are transactional and so a node or cluster failure while they are running would not corrupt the
database.

At this point, memory for the partitioned out rows has not been recovered within the original node
group – this can be remedied by issuing an OPTIMIZE TABLE command from a MySQL Server.

4.3 Multi-Threaded Disk Data File Access

The existing support for disk based table data allows much larger capacity databases to be created.
MySQL Cluster 7.0 modifies the file access architecture to improve the performance for working with
this data.

All access to the files used by MySQL Cluster is through I/O threads and in previous versions there
was a 1-to-1 mapping between open files and I/O threads. If a file is accessed frequently then the
single I/O thread could become a bottleneck and reduce system throughput. One workaround to
reduce this contention was to break these large files into smaller ones but that created more
administrative overhead.

MySQL Cluster 7.0 introduces a pool of I/O threads where each thread is not tied to an open file. A
file that is accessed very frequently could have a number of I/O threads allocated to it at a particular
point in time which increases the throughput as shown in Figure 11.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 16 of 28

The main benefit of this enhancement is increased I/O for heavily used files which improves the
throughput and response times for disk-based table data.

I/O Threads

Files

Operations
requiring I/O

Single-Threaded
Disk Access

Multi-Threaded
Disk Access

Figure 11 Multi-threaded disk data access

As I/O threads are no longer dedicated to all open files (whether they are in the process of being
accessed or not), it is now possible to reduce the overall number of I/O threads in the system which
reduces memory overhead.

It should be noted that some files continue to use single-threaded disk access (notably the redo log).
This makes sense where data is streamed in and the latency of each access is critical.

4.4 Improved Large Record Handling

The performance of the Cluster can be limited by the messaging that passes between the client and
the NDB data node and between the data nodes themselves. As Clusters grow, more and more traffic
must pass over these network connections and in many cases, the performance of these network
connections can limit the overall performance of the Cluster. In addition, the messaging consumes
CPU resources on both sides of the connections and so reducing the size or number of messages
can free up that CPU time for other work.

MySQL Cluster 7.0 introduces changes that optimize the use of the network connections by
addressing the size and number of messages. These changes can increase the performance of the
Cluster (and hence the application) and in some cases remove the need to migrate to a higher
performance/more costly network infrastructure.

5 Windows Platform
As enterprise and consumer dependence on communications networks and services grows, high
availability solutions continue to gain widespread market adoption, with demand to support an ever

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 17 of 28

increasing range of developer environments and deployment platforms. As the industry's leading
open source, high availability database for real-time, mission critical applications, MySQL Cluster has
always been built around open standards, available on a wide range of COTS platforms. MySQL
Cluster 7.0 extended this choice with support for the Microsoft Windows operating system.

MySQL Cluster had previously supported Windows-based clients through MySQL Server Connectors.
With the release of MySQL Cluster 7.0, the Cluster itself could now run on Microsoft Windows. This
support allows broader developer choice, enabling them to use their favorite platforms and tools to
quickly and simply develop compelling high-availability database applications. This capability also
extends the range of deployment options for DBAs and Systems Administrators to consider Windows
platforms, in addition to Linux and UNIX environments.

In MYSQL Cluster 7.0, Windows is supported for development systems but not for live, deployed
system. MySQL Cluster 7.1 extends this support by allowing MySQL Cluster nodes to run on
Windows in live deployments.

The list of supported platforms is published at
http://www.mysql.com/support/supportedplatforms/cluster.html and the binary and source downloads
are available from http://dev.mysql.com/downloads/cluster/

6 Simplified Cluster Monitoring and Management
We often focus on the headline features of the database – capacity, performance, transaction
interfaces and high availability but it is important to keep in mind the other functionality which makes
the database more usable in real-world situations.

MySQL Cluster 7.0 & 7.1 enhance some of these key areas.

6.1 ndbinfo Data Node Statistics

ndbinfo is a read-only database presenting information on what is happening within the cluster – in
particular, within the data nodes. This database contains a number of views, each providing data
about MySQL Cluster node status, resource usage and operations.

Because this information is presented through regular SQL views, there is no special syntax required
to access the data either in its raw form (“SELECT * FROM ndbinfo.counters”) or manipulating it by
filtering on rows and columns or combining (joining) it with data held in other tables. This also makes
it simple to integrate this information into existing monitoring tools (for example MySQL Enterprise
Monitor).

The ndbinfo views include the node-id for the data node that each piece of data is associated with and
in some cases the values will be different for each data node.

6.1.1 ndbinfo.counters

This view presents information on the number of events since the last restart for each data node:

mysql> select * from ndbinfo.counters;
+---------+------------+----------------+------------+--------------+------+
| node_id | block_name | block_instance | counter_id | counter_name | val |
+---------+------------+----------------+------------+--------------+------+
3	DBLQH	1	10	OPERATIONS	2069
3	DBLQH	2	10	OPERATIONS	28
4	DBLQH	1	10	OPERATIONS	2066

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 18 of 28

http://www.mysql.com/support/supportedplatforms/cluster.html
http://dev.mysql.com/downloads/cluster/

4	DBLQH	2	10	OPERATIONS	27
3	DBTC	0	1	ATTRINFO	140
3	DBTC	0	2	TRANSACTIONS	19
3	DBTC	0	3	COMMITS	19
3	DBTC	0	4	READS	19
3	DBTC	0	5	SIMPLE_READS	0
3	DBTC	0	6	WRITES	0
3	DBTC	0	7	ABORTS	0
3	DBTC	0	8	TABLE_SCANS	0
3	DBTC	0	9	RANGE_SCANS	0
4	DBTC	0	1	ATTRINFO	2
4	DBTC	0	2	TRANSACTIONS	1
4	DBTC	0	3	COMMITS	1
4	DBTC	0	4	READS	1
4	DBTC	0	5	SIMPLE_READS	0
4	DBTC	0	6	WRITES	0
4	DBTC	0	7	ABORTS	0
4	DBTC	0	8	TABLE_SCANS	1
4	DBTC	0	9	RANGE_SCANS	0
+---------+------------+----------------+------------+--------------+------+

The block_name refers to the software component that the counter is associated with – this gives
some extra context to the information:

• DBLQH: Local, low-level query handler block, which manages data and transactions local to
the cluster's data nodes, and acts as a coordinator of 2-phase commits.

• DBTC: Handles distributed transactions and other data operations on a global level

The block_instance field is used to distinguish between the different Local Query Handles threads
when using the multi-threaded data node (refer to section 4.1).

The counter_name indicates what events are being counted and the val field provides the current
count (since the last restart for the node).

This information can be used to understand how an application’s SQL queries (or NDB API method
calls) are mapped into data node operations and can be invaluable when tuning the database and
application.

6.1.2 ndbinfo.logbuffers

This view presents information on the size of the redo and undo log buffers as well as how much of
that space is being used:

mysql> select * from ndbinfo.logbuffers;
+---------+----------+--------+----------+----------+--------+
| node_id | log_type | log_id | log_part | total | used |
+---------+----------+--------+----------+----------+--------+
3	REDO	0	1	67108864	131072
3	REDO	0	2	67108864	131072
3	DD-UNDO	4	0	2096128	0
4	REDO	0	1	67108864	131072
4	REDO	0	2	67108864	131072
4	DD-UNDO	4	0	2096128	0
+---------+----------+--------+----------+----------+--------+

This information can be used to identify when the buffers are almost full so that the administrator can
increase their size – preempting potential issues. If the redo log buffers are exhausted then
applications will see 1221 “REDO log buffers overloaded” errors. In extreme cases, if the undo log
buffers fill too quickly then the database may be halted.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 19 of 28

When using the multi-threaded data node (ndbmtd), the log_part column is used to distinguish
between different LQH threads.
The sizes of the redo buffer can be increased using the RedoBuffer parameter. The size of the undo
buffer is specified in the undo_buffer_size attribute when creating the log file.

6.1.3 ndbinfo.logspaces

This view provides information on the disk space that has been configured for the log spaces for redo
and undo logs:

mysql> select * from logspaces;
+---------+----------+--------+----------+-----------+--------+
| node_id | log_type | log_id | log_part | total | used |
+---------+----------+--------+----------+-----------+--------+
3	REDO	0	0	536870912	0
3	REDO	0	1	536870912	0
3	REDO	0	2	536870912	0
3	REDO	0	3	536870912	0
3	DD-UNDO	4	0	78643200	169408
4	REDO	0	0	536870912	0
4	REDO	0	1	536870912	0
4	REDO	0	2	536870912	0
4	REDO	0	3	536870912	0
4	DD-UNDO	4	0	78643200	169408
+---------+----------+--------+----------+-----------+--------+

For the redo log space, there is 1 row for each of the 4 file sets for each data node and the total colum
is equal to the NoOfFragmentLogFiles configuration parameter multiplied by the FragmentLogFileSize
parameter while the used column is the amount actually used. If the files fill up before a local
checkpoint can complete then error code 410 (Out of log file space temporarily) will be observed. That
error can now be avoided by increasing NoOfFragmentLogFiles and/or FragmentLogFileSize if used
approaches total.

For the undo log space, the total column represents the cumulative size of all of the undo log files
assigned to the log group, as added using create/alter logfile group or the InitialLogFileGroup
configuration parameter. Adding extra undo files if used approaches total can be done to avoid getting
1501 errors.

6.1.4 ndbinfo.memoryusage

This view compares the amount of memory and index used to the amount configured for each data
node:

mysql> select * from memoryusage;
+---------+--------------+--------+------------+-----------+-------------+
| node_id | memory_type | used | used_pages | total | total_pages |
+---------+--------------+--------+------------+-----------+-------------+
3	Data memory	917504	28	104857600	3200
3	Index memory	221184	27	11010048	1344
4	Data memory	917504	28	104857600	3200
4	Index memory	221184	27	11010048	1344
+---------+--------------+--------+------------+-----------+-------------+
For data memory, the total column represents the amount of configured memory (in bytes) for the
data node – set using the DataMemory configuration parameter and used represents the amount
currently in use by the Cluster tables.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 20 of 28

For index memory, the total column represents the amount of configured index memory (in bytes) for
the data node – set using the IndexMemory configuration parameter and used represents the amount
currently in use by the Cluster tables.

The same information is also provided using memory pages rather than bytes.

To avoid exhausting the memory, monitor this table and if used approaches max then either:

• Delete obsolete table rows and run OPTMIMIZE TABLE
• Increase the value of IndexMemory and/or DataMemory
• Consider whether it is practical to alter some tables or columns to be stored on disk rather

than in memory

6.1.5 ndbinfo.nodes

This view shows status information for every data node in the cluster:
mysql> select * from ndbinfo.nodes;

mysql> select * from ndbinfo.nodes;
+---------+--------+---------+-------------+
| node_id | uptime | status | start_phase |
+---------+--------+---------+-------------+
| 3 | 16548 | STARTED | 0 |
| 4 | 17 | STARTED | 0 |
+---------+--------+---------+-------------+

The uptime column shows the time in seconds since the data node was started or last restarted.

The status is one of NOTHING, CMVMI, STARTING, STARTED, SINGLEUSER, STOPPING_1,
STOPPING_2, STOPPING_3, or STOPPING_4. If the status is set to STARTING then the start phase
is also displayed.

6.1.6 ndbinfo.transporters

This is a view showing the status of the connection between each data node and each of the other
nodes in the cluster (data nodes, management nodes, MySQL Server nodes and any NDB API
applications):

mysql> select * from transporters;
+---------+----------------+--------------+
| node_id | remote_node_id | status |
+---------+----------------+--------------+
3	1	CONNECTED
3	3	DISCONNECTED
3	4	CONNECTED
3	102	CONNECTED
3	103	CONNECTING
3	104	CONNECTING
4	1	CONNECTED
4	3	CONNECTED
4	4	DISCONNECTED
4	102	CONNECTED
4	103	CONNECTING
4	104	CONNECTING
+---------+----------------+--------------+

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 21 of 28

6.2 MySQL Cluster Manager

MySQL Cluster Manager provides the ability to control the entire cluster as a single entity, while also
supporting very granular control down to individual processes within the cluster itself. Administrators
are able to create and delete entire clusters, and to start, stop and restart the cluster with a single
command. As a result, administrators no longer need to manually restart each data node in turn, in
the correct sequence, or to create custom scripts to automate the process.

MySQL Cluster Manager automates on-line management operations, including the upgrade,
downgrade and reconfiguration of running clusters, without interrupting applications or clients
accessing the database. Administrators no longer need to manually edit configuration files and
distribute them to other cluster nodes, or to determine if rolling restarts are required. MySQL Cluster
Manager handles all of these tasks, thereby enforcing best practices and making on-line operations
significantly simpler, faster and less error-prone.

MySQL Cluster Manager is able to monitor cluster health at both an Operating System and per-
process level by automatically polling each node in the cluster. It can detect if a process or server host
is alive, dead or has hung, allowing for faster problem detection, resolution and recovery.

To deliver 99.999% availability, MySQL Cluster has the capability to self-heal from failures by
automatically restarting failed Data Nodes, without manual intervention. MySQL Cluster Manager
extends this functionality by also monitoring and automatically recovering SQL and Management
Nodes. This supports a more seamless and complete self-healing of the Cluster to fully restore
operations and capacity to applications.

MySQL Cluster Manager is available as part of the commercial MySQL Cluster Carrier Grade Edition
only.

For more information on MySQL Cluster Manager, refer to its dedicated white paper at
http://www.mysql.com/why-mysql/white-papers/mysql_wp_cluster_manager.php or browse the
material at http://www.mysql.com/products/database/cluster/mcm/ A demonstration of installing,
running and using MySQL Cluster Manager can be viewed at
http://www.mysql.com/products/database/cluster/mcm/cluster_install_demo.html

6.3 Snapshot Backup Options for MySQL Cluster

MySQL Cluster supports on-line data back-up, ensuring service interruptions are avoided during this
critical database maintenance task. The original Cluster back-up routine captured the database state
at the time the back-up operation ended. If you needed to synchronize this backup with other activities
(for example, backing up other, external databases), you could only estimate which point-in-time the
Cluster backup would capture whereas it would be desirable to decide when that point-in-time should
be. Using the new Point-in-Time Cluster Backup feature of MySQL Cluster 7.0, the database state
can now also be captured when the back-up operation starts. This ensures users can capture a
consistent state of their databases at any one time.

Figure 12 shows how the backup works if you choose to use the original Cluster backup strategy. If
the database is updated while it is being copied to disk, the updated fields will be in an indeterminate
state on disk and so a redo log is built up during the backup and then stored alongside the backup
file.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 22 of 28

http://www.mysql.com/why-mysql/white-papers/mysql_wp_cluster_manager.php
http://www.mysql.com/products/database/cluster/mcm/
http://www.mysql.com/products/database/cluster/mcm/cluster_install_demo.html

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 23 of 28

Digit Name

1 one

2 two

3 three

Time

Digit Name

1 one

2 TWO

3 three

Digit Name

1 one

2

3 three

deux

Backup
start

Backup
end

2 = TWO 2 = TWO

2 = deux

Digit Name

1 one

2

3 three

??

2 = TWO

2 = deux

Redo logs

Figure 12 Backup aligned with end

Figure 13 shows the restore process. The backup file is read from disk into memory and then the
updates in the redo log are applied from start to end. The result is that at the completion of the
restore, the database looks as it did at the end of the backup.

Digit Name

1 one

2 ??

3 three

2 = TWO

2 = deux

Digit Name

1 one

2

3 three

??

Digit Name

1 one

2

3 three

TWO

Digit Name

1 one

2

3 three

deux

Figure 13 Restore Aligned with end of backup

Figure 14 shows how the backup process differs if you choose to have the backup match the
database at the start of the backup rather than the end. Rather than writing changes to a redo log, the
reverse of the changes are written to an undo log.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 24 of 28

Digit Name

1 one

2 two

3 three

Time

Digit Name

1 one

2 TWO

3 three

Digit Name

1 one

2

3 three

deux

Backup
start

Backup
end

2 = two 2 = two

2 = TWO

Digit Name

1 one

2

3 three

??

2 = two

2 = TWO

Undo logs

Figure 14 Backup aligned with start

As shown in Figure 15, when restoring from the backup, the undo log is applied from the end of the
file backwards. The effect is that following the restore, the database looks as it did at the start of the
backup.

Digit Name

1 one

2 ??

3 three

2 = two

2 = TWO

Digit Name

1 one

2

3 three

??

Digit Name

1 one

2

3 three

TWO

Digit Name

1 one

2

3 three

two

Figure 15 Restore Aligned with start of backup

MySQL Cluster 7.0 further adds to the restore flexibility by allowing the user to exercise more fine-
grained control when restoring a MySQL Cluster from backup using ndb_restore. You can restore
only specified tables or databases, or exclude specific tables or databases from being restored, using
the new ndb_restore options --include-tables, --include-databases, --exclude-tables, and --exclude-
databases.

6.4 Configuration Data Cached

Formerly, MySQL Cluster configuration was stateless - that is, configuration information was reloaded
from the cluster's global configuration file (usually config.ini) each time ndb_mgmd was started.
Beginning with MySQL Cluster 7.0, the cluster's configuration is cached internally and the global
configuration file is no longer automatically re-read when the management server is restarted.

This has the benefit of maintaining a consistent view across the management servers rather than one
autonomously picking up a new configuration when it restarts.

This behavior can be controlled via the three new management server options --configdir, --initial, and
--reload.

6.5 Transactions for schema changes

Prior to MySQL Cluster 7.0, DDL (Data Definition Language) operations (such as CREATE TABLE or
ALTER TABLE) were not protected from data node failures. In the event of a data node failure,
MySQL Cluster 7 ensures such operations are now rolled back gracefully. Previously, if a data node
failed while trying to perform a DDL operation, the MySQL Cluster data dictionary became locked and
no further DDL statements could be executed without restarting the cluster. This enhancement makes
it safer to make on-line changes to a live system.

7 Connectors

7.1 MySQL Cluster Connector for Java

Prior to MySQL Cluster 7.1, the choices for Java developers were somewhat limited. The only
supported method was JDBC – either directly or through a 3rd party layer such as Java Persistence
API (JPA) compliant middleware. If Java users wanted greater performance then they were
responsible for writing their own Java Native Interface (JNI) layer sitting between their (Java)
application and the (C++) NDB API.

With the introduction of MySQL Cluster 7.1, the options
are much wider as shown in Figure 16. Working from left
to right the options are:

• Java application makes JDBC calls through
JDBC Driver for MySQL (Connector/J). This is a
technology that many Java developers are
comfortable and it is very flexible. However it
requires that the application developer maps
from their Java objects to relational, SQL
statements. In addition, performance can be
compromised as Connector/J accesses the data
through a MySQL Server rather than directly
accessing the data nodes through the NDB API.

• Applications can shift responsibility for the
Object-Relational-Mapping (ORM) to a 3rd party
JPA solution (for example, Hibernate, Toplink or
OpenJPA). While this frees the Java developer
from having to work with a relational data model,
performance can still be limited if the JPA layer
is having to access the data via JDBC.

• MySQL Cluster 7.1 introduces a plug-in for
OpenJPA which allows most JPA operations to
be performed through the NDB API (via a new
“ClusterJ” layer) with the remainder using JDBC.
This gives the Java developer the luxury of
working purely with objects while still getting much of the performance benefits of using the
NDB API.

Figure 16 Options for Java Applications

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 25 of 28

• Applications developers can choose to bypass the JPA layer and instead go directly to the
ClusterJ layer. This introduces some limitations but may be appropriate for developers
wanting to get the best possible performance and/or want to avoid introducing additional 3rd
party components (OpenJPA). ClusterJ is introduced by MySQL Cluster 7.1.

Finally, Java application developers still have the option to implement their own wrapper (typically

using JNI) to act as the Java/C++ mediator.

For more details on ClusterJ and ClusterJPA, please refer to
http://www.mysql.com/why-
mysql/whitepapers/mysql_wp_cluster_connector_for_java.php

7.2 High Availability Directory Back-End

MySQL Cluster has been widely deployed for subscriber / user databases within telecommunications
and web-based networks. Extending this capability, MySQL Cluster Carrier Grade Edition 7.0 can
serve as the back-end data store for LDAP directory servers, allowing users to preserve and enhance
their existing investments in LDAP technology. It allows organizations to embark on initiatives that
fully exploit user and network data that is currently distributed across legacy applications and
networks. In order to deploy a range of next generation, highly personalized services delivered over
the network; operators need to expose subscriber and network data in a standardized way. User
profiles are becoming richer as they capture network preference and media objects alongside
traditional customer contact and service entitlement data. At the same time security and auditing
requirements force data to be more transactional in nature. Using industry standard LDAP directories
with MySQL Cluster serving as the directory data store, organizations can leverage standard LDAP
interfaces for authentication and authorization of devices and subscribers with real-time performance,
carrier-grade availability and a total solution that reduces cost, risk and complexity for large,
transaction-intensive directory data sets.

Popular LDAP Directory OpenLDAP, provides a native NDB API driver for MySQL Cluster called
back-ndb.

Figure 17 MySQL Cluster Used as Back-End Storage for LDAP Servers

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 26 of 28

Figure 18 shows how existing MySQL Cluster Deployments now also have the option of extending the
data access methods to their data by adding a Directory Server as an additional front-end – enabling
application access using LDAP rather than SQL or the NDP API directly.

Application Nodes
(NDB API and/or MySQL Server)

Data Nodes

Management
Nodes

Clients

NDB Storage Engine

LDAP

Figure 18 Access methods to data in the Cluster

8 Conclusion
In this paper we explored in detail some of the new features which have been introduced in MySQL
Cluster 7.0 & 7.1:

• Multi-Threaded Data Nodes
• On-Line Add Node
• Multi-Threaded Disk Data File Access
• Improved Large Record Handling
• Windows Platform
• Point-in-Time Cluster Back-Up
• Configuration data cached
• Transactions for schema changes
• Carrier-Grade Directory Back-End
• Ndbinfo real-time reporting
• MySQL Cluster Connector for Java

For further information and the complete set of change logs for MySQL Cluster please refer to the
online documentation available at www.mysql.com.

MySQL Cluster continues down a development path focused on delivering a dramatically lower TCO
for a highly available real-time database and at the same time facilitating the ability to leverage a
scale-out (and now also scale-up) methodology using commodity hardware and open source
components.

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 27 of 28

 Copyright © 2009, 2010, Oracle and/or its affiliates. All rights reserved. Page 28 of 28

9 Links and References
Below are links to additional high availability resources from MySQL.

MySQL Cluster Evaluation Guide:

http://www.mysql.com/why-mysql/white-papers/mysql_cluster_eval_guide.php

MySQL Cluster NDB 7.0 Reference Guide: http://dev.mysql.com/doc/#cluster

MySQL Cluster API Developer Guide: http://dev.mysql.com/doc/#cluster

MySQL Cluster Architecture Overview White Paper:

http://www.mysql.com/why-mysql/white-papers/cluster-technical.php

MySQL Cluster Manager White Paper:

http://www.mysql.com/why-mysql/white-papers/mysql_wp_cluster_manager.php

MySQL Cluster Connector for Java White Paper:

http://www.mysql.com/why-mysql/white-papers/mysql_wp_cluster_connector_for_java.php

Copyright © 2009, 2010, Oracle and/or its affiliates. MySQL is a registered trademark of Oracle in the U.S. and in
other countries. Other products mentioned may be trademarks of their companies.

http://www.mysql.com/why-mysql/white-papers/mysql_cluster_eval_guide.php
http://dev.mysql.com/doc/#cluster
http://dev.mysql.com/doc/#cluster
http://www.mysql.com/why-mysql/white-papers/cluster-technical.php
http://www.mysql.com/why-mysql/white-papers/mysql_wp_cluster_manager.php
http://www.mysql.com/why-mysql/white-papers/mysql_wp_cluster_connector_for_java.php

	Introduction
	2 New Feature Overview
	3 MySQL Cluster Architecture Overview
	4 Enhanced Scalability and Performance
	4.1 Multi-Threaded Data Nodes
	4.1.1 Benefits
	4.1.2 Configuring NDB Data Nodes to be Multi-Threaded

	4.2 On-Line Add Node
	4.3 Multi-Threaded Disk Data File Access
	4.4 Improved Large Record Handling

	5 Windows Platform
	6 Simplified Cluster Monitoring and Management
	6.1 ndbinfo Data Node Statistics
	6.1.1 ndbinfo.counters
	6.1.2 ndbinfo.logbuffers
	6.1.3 ndbinfo.logspaces
	6.1.4 ndbinfo.memoryusage
	6.1.5 ndbinfo.nodes
	6.1.6 ndbinfo.transporters

	6.2 MySQL Cluster Manager
	6.3 Snapshot Backup Options for MySQL Cluster
	6.4 Configuration Data Cached
	6.5 Transactions for schema changes

	7 Connectors
	7.1 MySQL Cluster Connector for Java
	7.2 High Availability Directory Back-End

	8 Conclusion
	9 Links and References

