Advanced C Programming
Profiling

Sebastian Hack
hackQcs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

25.11.2008

SAARLAND

l l I I UNIVERSITY
I R

COMPUTER SCIENCE




Today

Profiling
Invasive Profiling
Non-Invasive Profiling

Tools
gprof
gcov
valgrind
oprofile

Conclusion



What is a Profiler?

Analyse the runtime behavior of the program
» Which parts (functions, statements, ...)
of a program take how long?
» How often are functions called?
» Which functions call which
» Construct the dynamic call graph
» Memory consumption

> Memory accesses
> memory leaks
» Cache performance



Invasive Profiling

v

Modify the program (code instrumentation)

v

Insert calls to functions that record data

» Advantages:
> Very precise
> Theoretically at the instruction level
> Precise call graph

v

Disadvantages:
> Potentially very high overhead
> Depends on the instrumentation code that is inserted
> Cannot profile already running systems
(long running servers)
> Can only profile application (not complete system)



Non-Invasive Profiling

» Statistic sampling of the program

> Use a fixed time interval
or Hardware performance counters (CPU feature)
to trigger sampling events

» Record instruction pointer at each sampling event

» Advantages:

» Small overhead

> Hardware assisted

> Can profile the whole system (even the kernel!)
» Disadvantages:

> not precise ©= “only” statistical data

» Call Graph possibly not complete

= some functions are never sampled



Profiles

» Flat Profile
How much time does the program spend in which function?

» Call Graph
Which function calls which function how often?

» Annotated Sources
Annotate each source line with number of executions



gprof

>

Mixture of invasive and statistical profiling

Invasive Part

>

S
| 4
>
>

gcc inserts calls to a function mcount into prologue of each function
Compile with -g and -pg

mcount can figure out its caller == we can construct the call graph
mcount counts the number of invocations for each function

Call to mcount is the only instrumentation
1z almost as efficient as normal build

After program is run, there is a file called gmon.out containing
profiling data

Evaluate contents of gmon.out with gprof name-of-program

~



gprof

Statistical Part

>

vV v v v

Kernel samples instruction pointer (IP)
on each timer interrupt (100/s)

Increments a counter in a histogram of address ranges
1z cannot track the exact location where timer interrupt happened

Provides a frequency distribution over code locations

Beware of low samplerate

Short running programs will mostly not provide meaningful data
Accumulation of several profile runs is possible:

$ ./test_program

$ mv gmon.out gmon.sum

$ ./test_program

$ gprof -s ./test_program gmon.out gmon.sum



gcov

v

v

v

v

Analyses coverage of program code
Which line was executed how often
Helps for finding code that

> can profit from optimizations
> that is not covered by test cases

Use GCC flags

» -fprofile-arcs: collect info about jumps
» -ftest-coverage: collect info about code coverage

Attention: Multiple code lines might be merged to one instruction

100: 12:if (a !'= b)
100: 13: c = 1;
100: 14:else

100: 15: c = 0;



valgrind

> JIT-compiler / translator:

» Construct intermediate representation from x86 assembly code
> Add instrumentation code
» Compile back to x86

» Done while program is loaded

> Is not only a profiler!

» No compiler flags / recompilation needed
(though -g -fno-inline advisable to analyse output)

» Program runtime can degrade drastically due to instrumentation
code and recompilation

» can escape to debugger on certain events
1= very handy when debugging memory leaks

» Disadvantage:

> program might run an order of magnitude slower
> program might consume an order of magnitude more memory



valgrind

Tools
memcheck
> Redirects calls to malloc and the like
» Keeps track of all allocated memory
» Instruments references to warn about “bad” memory accesses
> uninitialized
> already freed
» Detects memory leaks
» Warns about jumps taken upon uninitialized values
cachegrind
» Instruments memory accesses
» Simulates (!) a L1 and L2 cache in software
» Gives precise data about cache misses
callgrind

» Records the call graph

Hint

Use kcachegrind for visualization



oprofile

vV V. vV vV vV vV VvV VY

Non-invasive
Kernel module and user-space daemon
Does not modify the program at all
-g for debug symbols recommendable
Sampling uses performance counters
. or timer interrupt of perf. counters not available
Profiles the whole system (also the kernel!)
Can distill data for each binary separately
For Windows, use Intel vTune ($$$)



oprofile

Performance Counter

v

Set of hardware registers for a plethora of events

v

Differ from processor model to another

v

Very detailed events trackable. Examples:
» L2 cache misses
» Retired instructions
> Qutstanding bus requests
> ... and many more

v

Basic modus operandi:
> Kernel module tells the CPU to fire an exception after a certain
number of events of a certain type have occurred
> CPU traps into kernel
> instruction pointer is recorded in a buffer (no histograms)



oprofile

Howto

vV vV.v v v v .Y

Use opcontrol to control the daemon/module

opcontrol --init to load module and daemon

opcontrol -s to start sampling

opcontrol -t to stop sampling

opcontrol --dump flushes the event log

opcontrol --list-events shows available performance counters

opreport -1 prog-name gives breakdown of samples per function
in prog-name



Conclusion

v

v

v

v

Many different profiling methods exist
gprof

> is obsolete

> use only to get a quick impression

> and for the call graph

> sampling might be too imprecise
valgrind

> easy to use

> no recompile

> precise

> good visualization (kcachegrind)

> but large increase in runtime
oprofile

> much more precise than gprof

>

can profile exotic machine events
if you are going for the last cycles

> not as precise as valgrind
> need root rights on the machine



	Profiling
	Invasive Profiling
	Non-Invasive Profiling

	Tools
	gprof
	gcov
	valgrind
	oprofile

	Conclusion

