
Advanced C Programming
Profiling

Sebastian Hack
hack@cs.uni-sb.de

Christoph Weidenbach
weidenbach@mpi-inf.mpg.de

25.11.2008

computer science

saarland
university

1



Today

Profiling
Invasive Profiling
Non-Invasive Profiling

Tools
gprof
gcov
valgrind
oprofile

Conclusion

2



What is a Profiler?

Analyse the runtime behavior of the program

I Which parts (functions, statements, . . . )
of a program take how long?

I How often are functions called?

I Which functions call which
I Construct the dynamic call graph

I Memory consumption
I Memory accesses
I memory leaks
I Cache performance

3



Invasive Profiling

I Modify the program (code instrumentation)

I Insert calls to functions that record data

I Advantages:
I Very precise
I Theoretically at the instruction level
I Precise call graph

I Disadvantages:
I Potentially very high overhead
I Depends on the instrumentation code that is inserted
I Cannot profile already running systems

(long running servers)
I Can only profile application (not complete system)

4



Non-Invasive Profiling

I Statistic sampling of the program

I Use a fixed time interval
or Hardware performance counters (CPU feature)
to trigger sampling events

I Record instruction pointer at each sampling event

I Advantages:
I Small overhead
I Hardware assisted
I Can profile the whole system (even the kernel!)

I Disadvantages:
I not precise + “only” statistical data
I Call Graph possibly not complete

+ some functions are never sampled

5



Profiles

I Flat Profile
How much time does the program spend in which function?

I Call Graph
Which function calls which function how often?

I Annotated Sources
Annotate each source line with number of executions

6



gprof

I Mixture of invasive and statistical profiling

Invasive Part
I gcc inserts calls to a function mcount into prologue of each function

I Compile with -g and -pg

I mcount can figure out its caller + we can construct the call graph

I mcount counts the number of invocations for each function

I Call to mcount is the only instrumentation
+ almost as efficient as normal build

I After program is run, there is a file called gmon.out containing
profiling data

I Evaluate contents of gmon.out with gprof name-of-program

7



gprof

Statistical Part
I Kernel samples instruction pointer (IP)

on each timer interrupt (100/s)

I Increments a counter in a histogram of address ranges
+ cannot track the exact location where timer interrupt happened

I Provides a frequency distribution over code locations

I Beware of low samplerate

I Short running programs will mostly not provide meaningful data

I Accumulation of several profile runs is possible:

$ ./ test_program

$ mv gmon.out gmon.sum

$ ./ test_program

$ gprof -s ./ test_program gmon.out gmon.sum

8



gcov

I Analyses coverage of program code

I Which line was executed how often

I Helps for finding code that
I can profit from optimizations
I that is not covered by test cases

I Use GCC flags
I -fprofile-arcs: collect info about jumps
I -ftest-coverage: collect info about code coverage

I Attention: Multiple code lines might be merged to one instruction

100: 12:if (a != b)

100: 13: c = 1;

100: 14: else

100: 15: c = 0;

9



valgrind

I JIT-compiler / translator:
I Construct intermediate representation from x86 assembly code
I Add instrumentation code
I Compile back to x86

I Done while program is loaded

I Is not only a profiler!

I No compiler flags / recompilation needed
(though -g -fno-inline advisable to analyse output)

I Program runtime can degrade drastically due to instrumentation
code and recompilation

I can escape to debugger on certain events
+ very handy when debugging memory leaks

I Disadvantage:
I program might run an order of magnitude slower
I program might consume an order of magnitude more memory

10



valgrind
Tools

memcheck

I Redirects calls to malloc and the like
I Keeps track of all allocated memory
I Instruments references to warn about “bad” memory accesses

I uninitialized
I already freed

I Detects memory leaks
I Warns about jumps taken upon uninitialized values

cachegrind

I Instruments memory accesses
I Simulates (!) a L1 and L2 cache in software
I Gives precise data about cache misses

callgrind

I Records the call graph

Hint

Use kcachegrind for visualization

11



oprofile

I Non-invasive

I Kernel module and user-space daemon

I Does not modify the program at all

I -g for debug symbols recommendable

I Sampling uses performance counters

I . . . or timer interrupt of perf. counters not available

I Profiles the whole system (also the kernel!)

I Can distill data for each binary separately

I For Windows, use Intel vTune ($$$)

12



oprofile
Performance Counter

I Set of hardware registers for a plethora of events

I Differ from processor model to another

I Very detailed events trackable. Examples:
I L2 cache misses
I Retired instructions
I Outstanding bus requests
I . . . and many more

I Basic modus operandi:
I Kernel module tells the CPU to fire an exception after a certain

number of events of a certain type have occurred
I CPU traps into kernel
I instruction pointer is recorded in a buffer (no histograms)

13



oprofile
Howto

I Use opcontrol to control the daemon/module

I opcontrol --init to load module and daemon

I opcontrol -s to start sampling

I opcontrol -t to stop sampling

I opcontrol --dump flushes the event log

I opcontrol --list-events shows available performance counters

I opreport -l prog-name gives breakdown of samples per function
in prog-name

14



Conclusion

I Many different profiling methods exist

I gprof
I is obsolete
I use only to get a quick impression
I and for the call graph
I sampling might be too imprecise

I valgrind
I easy to use
I no recompile
I precise
I good visualization (kcachegrind)
I but large increase in runtime

I oprofile
I much more precise than gprof
I can profile exotic machine events

if you are going for the last cycles
I not as precise as valgrind
I need root rights on the machine

15


	Profiling
	Invasive Profiling
	Non-Invasive Profiling

	Tools
	gprof
	gcov
	valgrind
	oprofile

	Conclusion

