-

X-Tracing Hadoop

Andy Konwinski, Matei Zaharia,

Randy Katz, lon Stoica
CS division, UC Berkeley, andyk@cs.berkeley.edu

Motivation & Objectives

* Motivation:

— Hadoop style parallel processing masks
failures and performance problems

» Objectives:

— Help Hadoop developers debug and profile
Hadoop

— Help operators monitor and optimize
MapReduce jobs

About the RAD Lab

RAD V/?
N

Reliable, Adaptive Distributed Systems

S

Setup for X-Tracing

 Instrument Hadoop using X-Trace
framework

» Trace analysis
— Visualization via web-based Ul
— Statistical analysis and anomaly detection

* Identify potential problems

» X-Trace overview
» Applications of trace analysis
» Conclusion

Checkpoint

o X-Trace overview
» Applications of trace analysis
e Conclusion

How X-Trace Works

» Path based tracing framework

» Generate event graph to capture causality
of events across network
— Examples of events: RPCs, HTTP requests

* Annotate messages with trace metadata
(16 bytes) carried along execution path
— Instrument Protocol APIs and RPC libraries

DFS Write Message Flow

DFS
Client

First write
happens on

Begin write
operation on

o

o
- [T]
i 11]
DER N\
Laink 0P WRATE b
DFECieat
a _
LN

TTTT—
r31 completes
and returns

Third write

on final
Second write DataNode r31
on different "xxy]g s
DataNode r32 -

Do,

A t L\&At':'l“““\'?BZ completes

r33 completes
and returns

Sepedstirapk dlodite

3 Minute
Timeout

Failed DFS write

MapReduce Event Graph

Properties of Path Tracing

» Deterministic causality and concurrency
» Control over which events get traced

» Cross-layer

Low overhead

Modest modification of app source code
— Fewer than 500 lines for Hadoop

Our Architecture

Y

Hadoop Hadoop
Master Slave

Hadoop Hadoop
Slave Slave
X-Trace FE] X-Trace FE []

X-Trace FE [X-Trace FE]

TCP

= " Trace) X—race
N HTTP Trace
6%\)))\/ L Analysis Backend
Y
A Web Ul BerkeleyDB
User HTTP
Fault

Detection

Programs
N

* Web-based

* Provides
— Performance statistics
— Graphs of utilization
— Critical path analysis

Checkpoint

« X-Trace overview
» Applications of trace analysis
» Conclusion

Optimizing Job Performance

» Examined performance of Apache Nutch
web indexing engine on a Wikipedia crawl
* Time to creating an inverted link index of a
50 GB crawl
— With default configuration, 2 hours
— With optimized configuration, 7 minutes

EE Optimizing Job Performance

AN

Hachine Utilization over Tine

28

15

18

Hachines in use

a
a 18688 2888 3808 4888 Seee 6888 78808 filalald]

Tine (=)

Machine utilization under default configuration

Optimizing Job Performance

Active Tasks over Tine

-8 T T T T T T Hapé)
Reduces N

68

@ 58

>

-:

o 48

]

“

= 30

L]

=

28 § Three 10 minute

timeouts
1a A
a M.
] 1668 26808 3660 4888 5AAE 6AAA 7088 | 8A00

Tine (=)

Problem: One single Reduce task, which actually fails
several times at the beginning

Active Tasks over Tine

Optimizing Job Performance

148

128

1688

g8

68

Tasks active

48

28

a
a

] 188 158 288 258 308
Tine (=}

Active tasks vs. time with improved configuration
(50 reduce tasks instead of one)

T T
Haps S
Reduces NN

3598 408 458

» Motivated by observing slow machine

Read Perfornance by Host

358

3688 r

2958

Duration {s}

1688

288

158

Anomalous

Masternode

a 2 4] i
Host Number

18 12

Diagnosed to be failing hard drive

Statistical Analysis

» Off-line Machine Learning
— Faulty machine detection
— Buggy software detection

e Current Work on graph processing and
analysis

 Tracing more production MapReduce
applications

— Larger clusters + real workloads
* More advanced trace processing tools
» Migrating our code into Hadoop codebase

« Efficient, low overhead tracing of Hadoop
» Exposed multiple interesting behaviors

andyk@cs.berkeley.edu
matei@cs.berkeley.edu

http://x-trace.net

» Hadoop Summit prep TODO:
— A section on telemetry collection/correlation

— Add url where they can go to check out x-trace
(more about “official release™)

— Change green to blue on all graphs {color blind
bastards!)

— Email yahoo and joydeep about referencing our
work with them

Overhead of X-Trace

* Negligible overhead in our 40-node test
cluster

» Because Hadoop operations are large

* E.g. 18-minute Apache Nutch indexing job
with 390 tasks generates 50,000 reports
(~20 MB of text data)

Faulty Machine Detection

0.8 0.8

0.6 0.6

0.4 0.4

0+ 0
Welch Rank Welch Wilcoxon Permutation Welch Rank Welch Wilcoxon Permutation

Success Rate#l False Positive Rate M False Positive Rat¢

Failing disk, significance = 0.01 No failing disk, significance = 0.01

Observations about Hadoop

Read Performance vs Size

Duration (s}
= =
o @ 1]
@ @ @ =]
o e
-
+

1e+87 2e+07 3e+87 d4e+07 Se+87 Ge+07 Fe+d7
Size {(bytes)

Unusual run - very slow small reads at start of job

RAD%E? Optimizing Job Performance

DFS Utilization over Time
88

" Reads mmmm

70 Hrites

[Init [00s©.1%) |
Start JVM |1.6s (4.8%)
Init runner|(4.5s (13 .4%)
Run map |13.15(39.3%)
Cleanup |14.15 (42.4%)

60

50

48

38

Dperations active

Breakdown of longest map
with 3x more mappers

28

18

a

a 188 288 388 488 568 [3:1:] 7a8 888
Tine (s}

Tracing also illustrates the inefficiency of having
too many mappers and reducers

Related Work

* Per-machine logs
— Active tracing: log4j, etc
— Passive tracing: dtrace, strace
» Log aggregation tools: Sawzall, Pig

» Cluster monitoring tools: Ganglia

Event Graphs

» Events are nodes in a “causal” directed
graph
» Captures causality (graph edges)

» Captures concurrency (fan-out, fan-in,
parallel edges)

» Spans layers, applications, administrative
boundaries

Observations about Hadoop

» Hardcoded timeouts may be inappropriate
In some cases (e.g. long reduce task)

— Solution: expose timeouts in configuration
file?

» Highly variable DFS performance under
load (on our cluster), which can slow the
entire job
— Solution: multiple hard disks per node?

Node with 1 Disk Node with 4 Disks
(high variance typical) (variance typically lower)

Brad Perfornance v Sire Read Perfornance vs Size

A
e
m i
] - g
+ +
2 > oy *y
g " 1t et T
7,; an Q‘;J‘
5 - -
2w I- . | '
' +
an i
" '
18 I * j* e S
o B
L) ety Zeduly Jedny Aesy Geddll ey Fesdr
e (hyte: {bytes)

» Approach: Compare performance of each
machine vs. others in that trace

 Statistical Anomaly detection tests

