
UC Berkeley

X-Tracing Hadoop
Andy Konwinski, Matei Zaharia, 

Randy Katz, Ion Stoica
CS division, UC Berkeley, andyk@cs.berkeley.edu

Motivation & Objectives

• Motivation:
– Hadoop style parallel processing masks 

failures and performance problems  
• Objectives:

– Help Hadoop developers debug and profile 
Hadoop 

– Help operators monitor and optimize 
MapReduce jobs



About the RAD Lab

Reliable, Adaptive Distributed Systems

Setup for X-Tracing

• Instrument Hadoop using X-Trace 
framework

• Trace analysis
– Visualization via web-based UI
– Statistical analysis and anomaly detection

• Identify potential problems



Outline

• X-Trace overview
• Applications of trace analysis
• Conclusion

Checkpoint

• X-Trace overview
• Applications of trace analysis
• Conclusion



How X-Trace Works

• Path based tracing framework
• Generate event graph to capture causality 

of events across network
– Examples of events: RPCs, HTTP requests

• Annotate messages with trace metadata 
(16 bytes) carried along execution path
– Instrument Protocol APIs and RPC libraries

DFS Write Message Flow

Write Write Write



Example DFS Write

Successful DFS write

Report Label
Trace ID #
Report ID #
Hostname
Timestamp

…

Report Label
Trace ID #
Report ID #
Hostname
Timestamp

…

Report Graph Node

Begin write 
operation on 
DFS Client r37

Begin write 
operation on 
DFS Client r37

First write 
happens on 
DataNode r33

First write 
happens on 
DataNode r33

Second write 
on different 
DataNode r32

Second write 
on different 
DataNode r32

Third write
on final 
DataNode r31

Third write
on final 
DataNode r31

r33 completes
and returns  

r33 completes
and returns  

DFS Client 
write operation 

completes

DFS Client 
write operation 

completes

r32 completes
and returns  

r32 completes
and returns  

r31 completes
and returns  

r31 completes
and returns  

Failed DFS Write

Failed DFS write

3 Minute 
Timeout
3 Minute 
Timeout



MapReduce Event Graph

Example MapReduce graph

Properties of Path Tracing

• Deterministic causality and concurrency
• Control over which events get traced
• Cross-layer
• Low overhead
• Modest modification of app source code

– Fewer than 500 lines for Hadoop



Our Architecture

Hadoop
Master

Hadoop
Slave

X-Trace FE X-Trace FE

X-Trace 
Backend

BerkeleyDB

Trace 
Analysis 
Web UI

Hadoop
Slave

X-Trace FE

Hadoop
Slave

X-Trace FE

User
Fault 

Detection 
Programs

HTTPHTTP

TCP

HTTP

Trace Analysis UI

• Web-based
• Provides

– Performance statistics
– Graphs of utilization
– Critical path analysis



Checkpoint

• X-Trace overview
• Applications of trace analysis
• Conclusion

Optimizing Job Performance

• Examined performance of Apache Nutch
web indexing engine on a Wikipedia crawl

• Time to creating an inverted link index of a 
50 GB crawl
– With default configuration, 2 hours

– With optimized configuration, 7 minutes



Optimizing Job Performance

Machine utilization under default configuration

Optimizing Job Performance

Problem: One single Reduce task, which actually fails
several times at the beginning

Three 10 minute 
timeouts



Optimizing Job Performance

Active tasks vs. time with improved configuration
(50 reduce tasks instead of one)

Faulty Machine Detection

• Motivated by observing slow machine

Diagnosed to be failing hard drive
Host Number

MasternodeMasternode

AnomalousAnomalous



Statistical Analysis

• Off-line Machine Learning 
– Faulty machine detection
– Buggy software detection

• Current Work on graph processing and 
analysis

Future Work

• Tracing more production MapReduce
applications
– Larger clusters + real workloads

• More advanced trace processing tools
• Migrating our code into Hadoop codebase



Conclusion

• Efficient, low overhead tracing of Hadoop
• Exposed multiple interesting behaviors

andyk@cs.berkeley.edu
matei@cs.berkeley.edu

http://x-trace.net

Questions?

???



Andy’s ToDo Slide:

Overhead of X-Trace

• Negligible overhead in our 40-node test 
cluster

• Because Hadoop operations are large
• E.g. 18-minute Apache Nutch indexing job 

with 390 tasks generates 50,000 reports 
(~20 MB of text data)



Faulty Machine Detection

0

0.2

0.4

0.6

0.8

1

Welch Rank Welch Wilcoxon Permutation

Success Rates False Positive Rate

0

0.2

0.4

0.6

0.8

1

Welch Rank Welch Wilcoxon Permutation

False Positive Rate

Failing disk, significance = 0.01 No failing disk, significance = 0.01

Observations about Hadoop

Unusual run - very slow small reads at start of job



Optimizing Job Performance

Tracing also illustrates the inefficiency of having
too many mappers and reducers

Breakdown of longest map 
with 3x more mappers

Related Work

• Per-machine logs
– Active tracing: log4j, etc
– Passive tracing: dtrace, strace

• Log aggregation tools: Sawzall, Pig
• Cluster monitoring tools: Ganglia



Event Graphs

• Events are nodes in a “causal” directed 
graph
• Captures causality (graph edges)
• Captures concurrency (fan-out, fan-in, 

parallel edges) 
• Spans layers, applications, administrative 

boundaries

Observations about Hadoop

• Hardcoded timeouts may be inappropriate 
in some cases (e.g. long reduce task)
– Solution: expose timeouts in configuration 

file?
• Highly variable DFS performance under 

load (on our cluster), which can slow the 
entire job
– Solution: multiple hard disks per node?



Hardware Provisioning

Node with 4 Disks
(variance typically lower)

Node with 1 Disk
(high variance typical)

Faulty Machine Detection

• Approach: Compare performance of each 
machine vs. others in that trace

• Statistical Anomaly detection tests


