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Motivation & Objectives

* Motivation:

— Hadoop style parallel processing masks
failures and performance problems

» Objectives:

— Help Hadoop developers debug and profile
Hadoop

— Help operators monitor and optimize
MapReduce jobs




About the RAD Lab
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Setup for X-Tracing

 Instrument Hadoop using X-Trace
framework

» Trace analysis
— Visualization via web-based Ul
— Statistical analysis and anomaly detection

* Identify potential problems
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How X-Trace Works

» Path based tracing framework

» Generate event graph to capture causality
of events across network
— Examples of events: RPCs, HTTP requests

* Annotate messages with trace metadata
(16 bytes) carried along execution path
— Instrument Protocol APIs and RPC libraries

DFS Write Message Flow
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MapReduce Event Graph

Properties of Path Tracing

» Deterministic causality and concurrency
» Control over which events get traced

» Cross-layer

Low overhead

Modest modification of app source code
— Fewer than 500 lines for Hadoop




Our Architecture
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* Web-based

* Provides
— Performance statistics
— Graphs of utilization
— Critical path analysis
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Optimizing Job Performance

» Examined performance of Apache Nutch
web indexing engine on a Wikipedia crawl
* Time to creating an inverted link index of a
50 GB crawl
— With default configuration, 2 hours
— With optimized configuration, 7 minutes




EE Optimizing Job Performance
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Optimizing Job Performance
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Problem: One single Reduce task, which actually fails
several times at the beginning




Active Tasks over Tine

Optimizing Job Performance
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» Motivated by observing slow machine
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Statistical Analysis

» Off-line Machine Learning
— Faulty machine detection
— Buggy software detection

e Current Work on graph processing and
analysis

 Tracing more production MapReduce
applications

— Larger clusters + real workloads
* More advanced trace processing tools
» Migrating our code into Hadoop codebase




« Efficient, low overhead tracing of Hadoop
» Exposed multiple interesting behaviors

andyk@cs.berkeley.edu
matei@cs.berkeley.edu

http://x-trace.net




» Hadoop Summit prep TODO:
— A section on telemetry collection/correlation

— Add url where they can go to check out x-trace
(more about “official release™)

— Change green to blue on all graphs {color blind
bastards!)

— Email yahoo and joydeep about referencing our
work with them

Overhead of X-Trace

* Negligible overhead in our 40-node test
cluster

» Because Hadoop operations are large

* E.g. 18-minute Apache Nutch indexing job
with 390 tasks generates 50,000 reports
(~20 MB of text data)




Faulty Machine Detection
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Observations about Hadoop

Read Performance vs Size
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RAD%E? Optimizing Job Performance

DFS Utilization over Time
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Tracing also illustrates the inefficiency of having
too many mappers and reducers

Related Work

* Per-machine logs
— Active tracing: log4j, etc
— Passive tracing: dtrace, strace
» Log aggregation tools: Sawzall, Pig

» Cluster monitoring tools: Ganglia




Event Graphs

» Events are nodes in a “causal” directed
graph
» Captures causality (graph edges)

» Captures concurrency (fan-out, fan-in,
parallel edges)

» Spans layers, applications, administrative
boundaries

Observations about Hadoop

» Hardcoded timeouts may be inappropriate
In some cases (e.g. long reduce task)

— Solution: expose timeouts in configuration
file?

» Highly variable DFS performance under
load (on our cluster), which can slow the
entire job
— Solution: multiple hard disks per node?




Node with 1 Disk Node with 4 Disks
(high variance typical) (variance typically lower)
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» Approach: Compare performance of each
machine vs. others in that trace

 Statistical Anomaly detection tests




