
A Taxonomy and Survey on Distributed File Systems

Tran Doan Thanh1, Subaji Mohan1, Eunmi Choi1∗, SangBum Kim2, Pilsung Kim2
1School of Business IT, Kookmin University, Seoul, Korea

thanhtd@kookmin.ac.kr, subajimohan@yahoo.co.in, emchoi@kookmin.ac.kr
2SK Telecom Convergence and Internet R&D Center / SK T-Tower, Seoul, Korea

amzang@sktelecom.com, pskim11@sktelecom.com

∗ Corresponding author: Eunmi Choi (emchoi@kookmin.ac.kr). This work is supported by SKT research project fund in 2008.

Abstract

Applications that process large volumes of data
(such as, search engines, grid computing applications,
data mining applications, etc.) require a backend
infrastructure for storing data. The distributed file
system is the central component for storing data
infrastructure. There have been many projects focused
on network computing that have designed and
implemented distributed file systems with a variety of
architectures and functionalities. In this paper, we
develop a comprehensive taxonomy for describing
distributed file system architectures and use this
taxonomy to survey existing distributed file system
implementations in very large-scale network
computing systems such as Grids, Search Engines, etc.
We use the taxonomy and the survey results to identify
architectural approaches that have not been fully
explored in the distributed file system research.

1. Introduction

The Distributed File System (DFS) is used to build
a hierarchical view of multiple file servers and shares
on the network. Instead of having to think of a specific
machine name for each set of files, the user will only
have to remember one name; which will be the 'key' to
a list of shares found on multiple servers on the
network. Permanent Storage is a fundamental
abstraction in computing. A permanent storage consists
of a named set of objects that (1) come into existence
by explicit creation, (2) are immune to temporary
failures of the system, and (3) persist until explicitly
destroyed. The naming structure, the characteristics of
the objects, and the set of operations associated with
them characterize a specific refinement of the basic
abstraction. A file system is one such refinement.

A DFS is a file system that supports the sharing of
files in the form of persistent storage over a set of
network connected nodes [4]. Many DFS’s have been

developed over the years and almost two decades of
research have not succeeded in producing a fully-
featured DFS[1, 2, 3].

Multiple users who are physically dispersed in a
network of autonomous computers share in the use of a
common file system. A useful way to view such a
system is to think of it as a distributed implementation
of the timesharing file system abstraction. The
challenge is in realizing this abstraction in an efficient,
secure and robust manner. In addition, the issues of file
location and availability assume significance. One way
of increasing the availability of files within a DFS is by
using the replication of files. Most of the replication
techniques can be divided into two main categories
such as optimistic replication and pessimistic
replication [5].

Another major bottleneck in the performance of
DFS is the dramatic improvements in the processor
speeds. To overcome this limitation DFS uses caches
at various points [7] and these caches can be positioned
at either the file server or at the client [6]. To provide a
consistent view of the data seen by all clients in a DFS
and reliability in the case of failures, write operations
are allowed to complete only after the data has been
committed to stable storage. Therefore, the dominant
loads on the file server are due to writes. Thus
allowing write-backs from client can reduce this write-
load on the server [7, 8].

The ability to use commodity devices for easily and
economically scale-up is now very important in DFS’s
because of the demand of large-scale distributed
applications. This includes the incremental scalability
which is the ability to add more devices to scale up the
system in incremental fashion.

The systems surveyed are Google File System
(GFS) [15], Lustre [16], Kosmos File System [17],
Hadoop Distributed File System (Hadoop) [14],
Panasas [18], Parallel Virtual File System (PVFS2)
[19], and Redhat Global File System (RGFS) [20].
Requirements for DFS were described and an abstract
functional model developed. The requirements and

Fourth International Conference on Networked Computing and Advanced Information Management

978-0-7695-3322-3/08 $25.00 © 2008 IEEE

DOI 10.1109/NCM.2008.162

144

Authorized licensed use limited to: National Science Council. Downloaded on May 21, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

model were used to develop the taxonomy. This helped
in identifying some of the key DFS approaches and
issues that are yet to be explored and we expect such
unexplored issues as topics of future research. A
comprehensive bibliography forms the importance of
the paper.

The structure of the paper is as follows. Sections 2
cover Background information about Distributed File
System. In section 3, Taxonomy of Distributed File
System is reviewed in detail. In Section 4 overview of
different Distributed File Systems and comparison
between them are shown and in Section 5, Findings
related to DFS are presented and in Section 6
Discussion and Conclusion of the paper is outlined

2. Background

This review was started with the basic abstraction of
DFS and developed taxonomy of issues in the design
of DFS. A major step in the evolution of DFS’s was
the recognition that access to remote file could be
made to resemble access to local files. This property,
called network transparency, implies that any operation
that can be performed on a local file may also be
performed on a remote file. The extent to which an
actual implementation meets this ideal is an important
measure of quality. The Newcastle Connection and
Cocanet [9] are two early examples of systems that
provided network transparency. In both cases the
name of the remote site was a prefix of a remote file
name.

DFS provides location transparency and redundancy
to improve data availability in the face of failure or
heavy load by allowing shares in multiple different
locations to be logically grouped under one folder, or
DFS root. Many DFS performances are very low
compared to the local file systems because they
perform synchronous I/O operations for cache
coherence and data safety [10]. File systems such as
AFS [11] and NFS [12] present users with the
abstraction of a single, coherent namespace shared
across multiple clients. Although caching data on local
clients improves performance, many file operations
still use synchronous message exchanges between
client and server to maintain cache consistency and
protect against client or server failure.

Structuring a distributed system is a demanding
task, even if the size of the system is quite limited. But
the work becomes much more difficult when the scale
of the system is very large. We need to consider that
any viable distributed system architecture must support
the notion of autonomy if it is to scale at all in the real
world [13].

When we consider the location transparency it can
be viewed as a binding issue. The binding of location
to name is static and permanent when pathnames with
embedded machine names are used. The binding is less
permanent in a system like Sun NFS. It is most
dynamic and flexible in Google and Hadoop. Usage
experience has confirmed the benefits of a fully
dynamic location mechanism in a large distributed
environment.

Another major issue that attracts attention in the
DFS is the failure of a machine (server or client),
which cannot be distinguished from the failure of a
communication link, or from slow responses due to
extreme overloading. Therefore, when a site does not
respond one cannot determine if the site has failed and
stopped processing, or if a communication link has
failed and the site is still operational. One must then
assume that the inaccessible site is still capable of
processing file requests. The file system protocol
should handle this case in such a way that the
consistency and semantic guarantees of the system will
not be violated.

Based on this background issues we have developed
our taxonomy that need to be considered when
designing a DFS for grids, search engines etc. The
following section covers the taxonomy in detail.

3. Taxonomy of Distributed File System

The motivation behind developing this taxonomy is
to analyze the features that constitute the DFS and
helps to incorporate a most appropriate and suitable
file system that performs better, fault tolerant and
secured one.

 Architecture
First Issue considered during the study was to find

the types of DFS architectures that are available.
Different DFS Architectures exists such as Client-
Server Architectures (e.g. Sun Microsystem’s
Network File System) which provides a standardized
view of its local file system. This old fashion of DFS
comes with a communication protocol that allows
clients to access the files stored on a server thus
allowing a heterogeneous collection of processes
running on different operating systems and machines
share a common file system. Advantage of this scheme
is that it is largely independent of local file systems.
Important issue is that it cannot be used in MS-DOS
due to its short file names. Another type of
Architecture is Cluster-Based Distributed File
System such as Google File Systems. It consists of a
Single master along with multiple chunk servers and
divided into chunks of 64 Mbytes each. The advantage

145

Authorized licensed use limited to: National Science Council. Downloaded on May 21, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

is its simplicity and it allows single master to control a
few hundred chunk servers. In the Cluster-based DFS,
there are three important features of architecture that
usually be considered during design are Decoupled
metadata and data, Reliable Autonomic Distributed
Object Storage, and Dynamic Distributed Metadata
Management. Third type of architecture is Symmetric
Architecture that is based on peer-to-peer technology.
It uses a DHT based system for distributing data,
combined with a key based lookup mechanism. In a
symmetric file system, the clients also host the
metadata manager code, resulting in all nodes
understanding the disk structures. In contrast, an
Asymmetric Architecture file system is a file system
in which there are one or more dedicated metadata
managers that maintain the file system and its
associated disk structures. Examples include Panasas
ActiveScale, Lustre and traditional NFS file systems.
Finally, a Parallel Architecture file system is one in
which data blocks are striped, in parallel, across
multiple storage devices on multiple storage servers.
Support for parallel applications is provided allowing
all nodes access to the same files at the same time, thus
providing concurrent read and write capabilities. Most
of the current DFS’s support this important feature. An
important note is that all of the above definitions
overlap. A DFS can be symmetric or asymmetric. Its
servers may be clustered or single servers. And it may
support parallel applications or it may not. Based on
the survey it is been identified that Multiple layers
architecture allows flexibility so that protocol or
functional layers can be easily added.

 Processes
Even though DFS’s processes have no unusual

properties the important aspect concerning this is
whether they should be stateless or not. The primary
advantage of the stateless approach is simplicity. But it
will be difficult to follow during implementation
because locking a file cannot be done easily by a
stateless server. Processes in some of the most
commonly used DFS’s are studied and its flaws are
analyzed. Except PVFS2, almost other DFS’s support
stateful processes. The major advantage of a stateless
architecture is that clients can fail and resume without
disturbing the system as a whole. This feature allows
PVFS2 to scale to hundreds of servers and thousands
of clients without being impacted by the overhead and
complexity of tracking file state or locking information
associated with these clients.

 Communication
Most of the DFS’s use Remote Procedure Call

method to communicate as they make the system
independent from underlying operating systems,

networks and transport protocols. In RPC approach,
there are two communication protocols to consider,
which are TCP and UDP. TCP is mostly used by all
DFS’s. However, UDP is also considered for
improving performance in Hadoop. There is also a
completely different approach to handle
communication in DFS is Plan 9. It is mainly a file-
based distributed system and in this all resources are
accessed in the same way, namely with file like syntax
and operations, including even resources such as
processes and network interfaces. In this aspect, Lustre
has considered a more flexible architecture in which
they can provide Network Independence. Lustre can
be used over a wide variety of networks due to its use
of an open Network Abstraction Layer. Therefore, it
provides unique support for heterogeneous networks.

 Naming
It plays an important role as each object has an

associated logical path name and physical address. An
aggregation of all the logical path names comprises a
distributed name space which can be logically
partitioned into domain. The addresses of the objects
are used to access the objects in order to retrieve
information from the distributed system. The naming
structure of the file system, the application
programming interface, the mapping of the file system
abstraction on to physical storage media, and the
integrity of the file system across power, hardware,
media and software failures. It is been identified in
systems such as Network File System. Its fundamental
idea is to provide its clients complete transparent
access to a remote file system. The currently common
approach employs a central metadata server to
manage file name space. Therefore decoupling
metadata and data improve the file namespace
throughput and relief the synchronization problem.
Another approach is metadata distributed in all
nodes resulting in all nodes understanding the disk
structure. But serious implication is users do not share
name spaces due to security issues. It makes file
sharing harder. The different systems are studied and
analyzed to define the most appropriate naming
structure and method.

 Synchronization
The vital issue that is to be analyzed in the DFS is

Synchronization issue. In a distributed system, the
Semantics of File Sharing becomes a bit tricky when
performance issues are at stake. When a same file is
shared by two or more users, it is necessary to define
the semantics of reading and writing precisely to avoid
problems. Even though it looks conceptually simple, it
is quite difficult to implement. There are few
approaches that are available such as UNIX semantics,

146

Authorized licensed use limited to: National Science Council. Downloaded on May 21, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

Session semantics, Immutable semantics, and
Transactions. Apart from semantics, we also consider
to analyze the File Locking System in the DFS.
Depending on the purpose of applications deploying on
the DFS, it is developed with different locking
mechanism. Major usages require Write-once-read-
many access model. However, there are applications
such as search engines require Multiple-
producer/single-consumer access model. GFS is the
infamous example for this model. To support their
access model, some systems choose to give locks on
objects to clients, and some choose to perform all
operations synchronously on the server. Giving locks
on objects to clients lead to one performance
improvement by caching at client. Lustre is the one
that apply hybrid solution for File Locking System. In
Lustre, Locking mode is chosen differently depending
on the resource contention level. The last issue we
study in synchronization problem is using leases,
which is the most common method to control the
parallel access to DFS.

 Consistency and Replication
To provide the consistency, most of DFS employ

checksum to validate the data after sending through
communication network. Besides, Caching and
Replication play an important role in DFS, most
notable when they are designed to operate over wide-
area network. It can be done in quite few ways such as
Client-side caching and Server-Side replication.
There are two types of data need to be considered for
replication: metadata replication and data object
replication. Metadata is the most important part of the
whole DFS. Thus, all DFS provide a mechanism to
ensure the availability and recoverability of this data
such as backup metadata server and snapshot of
metadata with transaction logs. For data objects, there
are different approaches depending on the purpose of
applications. DFSs like Lustre and Panasas assume that
data object is available as long as the physical devices
are available. Hence, they consider a physical failure
as exception and the object data can be lost. However,
there are some systems like Lustre which supports
RAID0 model to store data to reduce the probability of
loosing data and increase the access performance. In
case of other DFSs like GFS and Hadoop, their
applications require the availability of data as the
critical condition and failure will be the norm rather
than the exception. Thus, data objects are replicated in
different servers. This high bandwidth consuming
feature leads to the asynchronous replication method

name “Replication in pipeline” which is employed in
GFS and Hadoop.

 Fault Tolerance
Fault tolerance is very much related to the

replication feature because replication is created to
provide availability and support transparency of
failures to users. As mentioned in Consistency and
Replication section, there are two approaches for fault
tolerance on object data: failure as exception and
failure as norm. “Failure as exception” systems will
isolate the failure node or recover the system from last
normal running state. “Failure as norm” systems
employ replication of all kind of data and execute re-
replication whenever replication ratio becomes unsafe.

 Security
Authentication Issues and access control are some

of the important security issues in DFS’s that need to
be analyzed. Impact of decentralized authentication is
also taken into consideration during the survey of the
DFS’s. Most DFS employ security with authenticat-
ion, authorization and privacy by leveraging existing
security systems. Yet, some DFS’s for specific
purposes such as GFS and Hadoop, base on the trust
between all nodes and clients so that they don’t employ
no dedicated security mechanism in their architecture.

 Other Issues
One important issue of DFS’s is the ability to use

commodity devices to build up the system. The
advantage of this capability is whenever the
commodity devices are improved, the DFS is
automatically and naturally improved. Besides, it also
become very cost effective when there is the need to
scale up the system.

4. Comparison of Distributed File Systems

The systems surveyed are Google File System
(GFS) [15], Lustre [16], Kosmos File System [17],
Hadoop Distributed File System (Hadoop) [14],
Panasas [18], Parallel Virtual File System (PVFS2)
[19], and Redhat Global File System (RGFS) [20].
There are many more DFS in the literature such as
NFS, AFS, QFS, and ZFS… However, due to space
limitation, their novelty and their representative, we
could not add them into our survey. We summarize the
comparison in Table 1.

147

Authorized licensed use limited to: National Science Council. Downloaded on May 21, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

Table 1: Overall Comparison of Different Distributed File Systems

File system GFS KFS Hadoop Lustre Panasas PVFS2 RGFS
Architecture Clustered-based,

asymmetric,
parallel, object-
based

Clustered-based,
asymmetric,
parallel, object-
based

Clustered-based,
asymmetric,
parallel, object-
based

Clustered-based,
asymmetric,
parallel, object-
based

Clustered-based,
asymmetric,
parallel, object-
based

Clustered-based,
symmetric,
parallel,
aggregation-
based

Clustered-
based,
symmetric,
parallel, block-
based

Processes Stateful Stateful Stateful Stateful Stateful Stateless Stateful
Communication RPC/TCP RPC/TCP RPC/TCP&UDP Network

Independence
RPC/TCP RPC/TCP RPC/TCP

Naming Central metadata
server

Central metadata
server

Central metadata
server

Central metadata
server

Central metadata
server

Metadata
distributed in all
nodes

Metadata
distributed in
all nodes

Synchronization Write-once-read-
many, Multiple-
producer/single-
consumer, give
locks on objects
to clients, using
leases

Write-once-read-
many, give locks
on objects to
clients, using
leases

Write-once-read-
many, give locks
on objects to
clients, using
leases

Hybrid locking
mechanism,
using leases

Give locks on
objects to clients

No locking
method, no
leases

Give locks on
objects to
clients

Consistency and
Replication

Server side
replication,
Asynchronous
replication,
checksum, relax
consistency
among
replications of
data objects

Server side
replication,
Asynchronous
replication,
checksum

Server side
replication,
Asynchronous
replication,
checksum

Server side
replication –
Only metadata
replication,
Client side
caching,
checksum

Server side
replication –
Only metadata
replication

No replication,
relaxed semantic
for consistency

No replication

Fault tolerance Failure as norm Failure as norm Failure as norm Failure as
exception

Failure as
exception

Failure as
exception

Failure as
exception

Security No dedicated
security
mechanism

No dedicated
security
mechanism

No dedicated
security
mechanism

Security in the
form of
authentication,
authorization
and privacy

Security in the
form of
authentication,
authorization
and privacy

Security in the
form of
authentication,
authorization
and privacy

Security in the
form of
authentication,
authorization
and privacy

5. Findings

Based on the survey and taxonomy, the following
findings on different DFS’s can help to select an
appropriate DFS according to the application and the
requirements.

 Lustre:
Lustre is a shared disk file system. Commonly used

for large scale cluster computing. It is an open-standard
based system with great modularity and compatibility
with interconnects, networking components and
storage hardware. It is suitable for general purposes file
systems. Currently, it is only available for Linux.

 Kosmos File System:
Kosmos Distributed File System (KFS), a high

performance DFS that supports applications whose
workload could be characterized as, Primarily write-
once/read-many workloads, Few millions of large files,
where each file is on the order of a few tens of MB to a
few tens of GB in size, Mostly sequential access. It
provides high performance combined with availability
and reliability. It is intended to be used as the backend
storage infrastructure for data intensive apps such as,
search engines, data mining, grid computing etc.

 Hadoop:
Hadoop is a Distributed parallel fault tolerant file

system. It is designed to reliably store very large files
across machines in a large cluster. It is inspired by the
Google File System. Hadoop DFS stores each file as a
sequence of blocks; all blocks in a file except the last
block are the same size. Blocks belonging to a file are
replicated for fault tolerance. The block size and
replication factor are configurable per file. Files are
“write once” and have strictly one writer at any time.

 Google file system:
Google File System is a proprietary DFS developed

by Google for its own use. It is designed to provide
efficient, reliable access to data using large clusters of
commodity hardware. In GFS files are huge by
traditional standards and are divided into chunks of 64
megabytes. Most files are mutated by appending new
data rather than overwriting existing data: once written,
the files are only read and often only sequentially. It is
also optimized to run on computing clusters, the nodes
of which consist of cheap, "commodity" computers,
which means precautions must be taken against the
high failure rate of individual nodes and the data loss.

148

Authorized licensed use limited to: National Science Council. Downloaded on May 21, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

 Panasas:
It implements file system entirely in hardware. It is

suitable for general purposes file systems. To improve
overall utilization of storage systems, network
performance and increasing access to vital data,
Panasas has developed ActiveScale Storage cluster. By
combining a DFS with smart hardware, the Panasas
Storage Cluster scales dramatically in both capacity
and performance and extends appliance-like ease-of-
manageability to a virtually boundless storage system.

 PVFS2:
The data access is achieved without file or metadata

locking. PVFS2 is best suited for I/O-intensive (i.e.,
scientific) applications. PVFS2 could be used for high-
performance scratch storage where data is copied and
simulation results are written from thousands of cycles
simultaneously.

 RGFS:
It is an open-standard based system with great

modularity and compatibility with interconnects,
networking components and storage hardware. Besides,
it is a relatively low-cost, SAN-based technology. It is
suitable for general purposes file systems. However, it
is only available on Red Hat Enterprise Linux.

6. Conclusion

The DFS is one of the most important and widely-
used form of shared permanent storage. The
continuing interest in DFS bears testimony to the
robustness of this model of data sharing. As elaborated
in the preceding section, architecture, naming,
synchronization, availability, heterogeneity and
support for databases will be key issues that are to be
taken into consideration while designing the DFS.
Security will continue to be a serious concern and may,
in fact, turn out to be the big concern for large
distributed systems. In this paper, taxonomy was
developed for the DFS and based on the taxonomy
some of the most popular and common distributed file
were reviewed and surveyed. The features, its
advantages and disadvantages of each DFS are outlined
and in detailed and also outline the findings that
enables to select an appropriate one according to their
needs.

7. References

[1] Chandramohan A. Thekkath, et al, "Frangipani: A
scalable Distributed File System", System Research Center,
Digital Equipment Corporation, Palo Alto, CA, 1997.
[2] Barbara Liskov, et al, "Replication in the Harp File
System", Laboratory of Computer Science, MIT, Cambridge,
CA, 1991.

[3] John Douceur and Roger Wattenhofer, "Optimizing file
availability in a server-less distributed file system" In
Proceedings of the 20th Symposium on Reliable Distributed
Systems, 2001.
[4] Eliezer levy and Abraham silberschatz, "Distributed File
Systems: Concepts and Examples", ACM Computing
Surveys, Vol. 22, No. 4, December 1990..
[5]Yasushi Saito and Marc Shapiro, "Optimistic
Replication", ACM Computing Surveys, Vol. 37, No. 1,
March 2005, pp. 42-81.
[6] Satyanarayanan, M., "A Survey of Distributed File
Systems," Technical Report CMU-CS-89- 116, Department
of Computer Science, Camegie Mellon University, 1989
[7] Howard, J.H., et al, "Scale and Performance in a
Distributed File System," ACM Transactions on Computer
Systems, Vol. 6, Issue 1, February 1988.
[8] Nelson, M.N., et al. "Caching in the Sprite Network File
System," ACM Transactions on Computer Systems,
February, 1988
[9] Rowe, L.A., Birman, K.P. “A Local Network Based on
the Unix Operating System”, IEEE Transactions on Software
Engineering SE-8(2), March, 1982.
[10] Edmund B. Nightingale, Peter M. Chen, and Jason
Flinn, “Speculative Execution in a Distributed File System”,
ACM SOSP’05, October 23–26, 2005, Brighton, United
Kingdom.
[11]Howard,J.H.,Kazar,M.L.,Menees,S.G.,Nichols, D. A.,
Satyanarayanan, M., Sidebotham, R. N., and West, M. J.
“Scale and performance in a distributed file system”, ACM
Transactions on Computer Systems, Vol. 6, Issue1, February
1988
[12] Callaghan, B., Pavlowski, B., and Staubach, P., “NFS
Version 3 Protocol Specification”, Technical Report RFC
1813, IETF, June 1995.
[13] Alonso, Rafael and Luis L. Cova, “Resource Sharing in
a Distributed Environment,” Proceedings of ACM SIGOPS
European workshop, Cambridge, England, September, 1988.
[14] The Hadoop Distributed File System
http://hadoop.apache.org/core/docs/current/hdfs_design.html
[15] Ghemawat, S., Gobioff, H., Leung, S.T., “The Google
file system”, ACM SIGOPS Operating Systems Review,
Volume 37 , Issue 5, pp. 29-43, December, 2003.
[16] Braam, P.J, “The Lustre storage architecture”, White
Paper, Cluster File Systems, Inc., October, 2003.
[17] “KOSMOS DISTRIBUTED FILE SYSTEM”,
http://kosmosfs.sourceforge.net/
[18] Nagle, D., Serenyi, D., Matthews, A., “The Panasas
ActiveScale Storage Cluster: Delivering Scalable High
Bandwidth Storage”, Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, pp. 53-, 2004.
[19] Yu, W., Liang, Sh., Panda, D.K., “High performance
support of parallel virtual file system (PVFS2) over
Quadrics”, Proceedings of the 19th annual international
conference on Supercomputing, pp. 323-331, 2005.
[20] “Red Hat Global File System”, White Paper,
www.redhat.com/whitepapers/rha/gfs/GFS_INS0032US.pdf.

149

Authorized licensed use limited to: National Science Council. Downloaded on May 21, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

