
Building IDS Log Analysis System
on Novel Grid Computing Architecture

Wei-Yu Chen, Wen-Chieh Kuo, Yao-Tsung Wang

National Center for High-Performance Computing, Taiwan
{ waue ,rock ,jazz}@nchc.org.tw

Abstract

With the increasing of viruses and malicious

attacks, the volume of alerts generated by Intrusion
Detection System (IDS) becomes very large. Using
conventional methods to analyze a lot of data would
drag on system performance. In this paper, we
propose an IDS log analysis system, named ICAS, to
provide a summarized alarm reports. This system is
based on the new grid computing platform (Hadoop)
and operated by the designed Map / Reduce
algorithms. In our experiments, ICAS can achieve at
least 89% of the integration rate and provide good
performance with large data sets. Hence, ICAS can
perform an analysis system with high performance and
good summarized ability.

Keywords: Hadoop, IDS, alert correlation, Map
Reduce, cloud computing.

1. Introduction

Mostly, the researches of intrusion detection area
are involved in the false positive and false negative of
Intrusion Detection System (IDS). However, how to
find out the malicious intrusion precisely is not the
only problem. From the view of an administrator, a
lucid and readable log appearance is exigent and
essential. Nowadays, most of the IDS log management
system store alerts by handling domain into database
and show these results by query method. However,
there are several problems in this method. Firstly,
large amount of data would cause database less
efficient. Secondly, it is easy to ignore the crucial
information in large amount of alerts. Moreover, if the
database were crash, all of the alerts would be missing.

By using parallel and distributed computing, there
are several benefits for resolving above problems, such
as analyzing huge data sets, high performance for
reading access and fault tolerance. In this paper, we
propose an IDS-Log Cloud Analysis System (ICAS), to

analyze the IDS logs and provide a summarized alarm
reports. In order to let this system operate on a new
grid computing platform named as Hadoop, which is
also well known as Cloud Computing platform, we
design a Map / Reduce algorithms to adapt it.

The rest part of the paper is organized as follows:
Section 2 reviews related works and distinguished the
new approach from previous solutions. Section 3
describes the concepts of alerts integration. Section 4
introduced the overall system architecture. The
integration of the alert merging process into Cloud
Computing is presented in Section 5. The
experimental performance results are reported in
Section 6. Finally, we summarize the contributions
and comments on further research.

2. Background

2.1 Intrusion Detection System

An IDS analyzes information about the activities
produced from networks and seeks for malicious
behavior. Detection methods are used by intrusion
detection systems in two different ways, according to
two different criterions: anomaly detection [4], [10],
[11], [12] and misuse detection. In anomaly detection
systems, a “normal profile” should be built by
historical data about a system’s activity and then use
this profile to identify patterns of activity. On the
contrary, misuse detection systems [16], [18] are based
on specific attack signatures that are matched against
the stream of audit data seeking for that malicious
attack is occurring. Most of IDS are based on this
misuse detection system, such as Snort [19]. Snort is
the most popular IDS especially in open source
network intrusion detection systems. It can absolutely
promote intrusion prevention system. Snort utilizes a
rule-driven language, containing the benefits of
signatures and anomaly. Snort has become the
standard for the industry and many experiments on
academic paper are based on it [2], [25], [27].

2.2 Alert Correlation
Alert correlation is an analysis process that takes

the alerts generated by IDS and creates reports under
its surveillance network. A number of the proposed
approaches include a multiphase analysis of the alert
stream. For example, the model proposed by
Andersson [1] and Valdes et al. [20], [21] presents a
correlation process by collecting low-level events using
the data of attack threads and using a similarity metric
to fuse alerts into merged alerts. This approach
depends on a knowledge pool that contains the
description of security-relevant characteristics and
priorities of these alerts and a format of passive alert
verification. [17]

2.3 Cloud Computing

The term “Cloud Computing” means the usage of
computer technology (Computing) based on Internet
(Cloud). The computing capabilities are provided as a
service without knowledge or expertise support. Cloud
Computing is the next natural step in the evolution of
on demand information technology services and
products. Cloud Computing became famous in October
2007 when IBM and Google announced collaboration
[14]. This was followed by IBM's announcement of the
"Blue Cloud" effort [22]. Until now, Google is one of
the leaders in this technology and has built Internet
consumer services like search, social networking, Web
e-mail and online commerce that use Cloud
Computing. The companies such as Yahoo [26] and
Amazon [6] also provide great Cloud Computing
applications, too.

3. Alert Integration Procedure

Although some correlation approaches have been
suggested in section 2.2, there is no consensus on what
this process is or how it should be implemented and
evaluated. Fortunately, Fredrik [23] et al. proposed a
comprehensive approach to integrate alerts. Their
experiment results verify this approach with
outstanding reduction rate. Condensing this concept,
we extract some essence steps of merging alerts and
implement it into our analysis system.
As shown in Figure 1, the merging process checks
whether raw-alert and meta-alerts could be merged.
Initially, raw alert whose key is K1 with value v1 and
v2 is the first alert, so it goes into meta-alert directly.
Next, the second alert whose key is K2 approaches.
Because each of their keys is not identical, merging
process sends it into meta-alerts. After that, merging

process combines the third alert with the meta-alert
whose key is K1 and appends the meta-alerts to new
valueV3.

Figure 1. Alert merging process.

“Final_Alert”

Field
Description

Ip_dst Destination IP addresses. (Primary key).
signature Signature is a unique ID used to identify attack

method in Snort rules. (Primary key).
Sig_name Signature name corresponded to Snort ID.
Sig_class_id Classification ID of this Snort ID
Sig_priority Priority of Snort ID
Ip_src Source IP address.
Ip_proto TCP/IP protocol.
Src_ports Attack lunched ports
Dst_ports Victim ports

Figure 2. Database table and its description.

This predecessor’s research supplies a classic idea.

At the aspect of implementation, we use Snort with
MySQL [15] database and imitate this approach to
design an integration process. The Snort alert data
stored in MySQL is separated into “event” (associated
with “signature” table), “iphdr”, “tcphdr”, “udphdr”
and “icmphdr” tables. In these five tables, both of
“sid” and “cid” are composite primary keys used to
identify an alert, but both of them would be unessential
for merged alert. The other significant fields are
designed in “Final_Alert” table shown as Figure 2. By
extracting data from original tables, the integration
process merges all data overall and inject result into
the “Final_Alert” table.

Figure 3. Architecture of ICAS.

4 System Architecture

The IDS Cloud Analysis System (ICAS) is an alert
integration system building on the infrastructure of
Cloud Computing. Figure 3 shows the overall
architecture of this paper proposed. There are three
parts in this architecture. The individual components
are described as following.

4.1 Intrusion Detection System

Alert Generator should be software designed and
network IDS to detect unwanted attempts. At the
present time, Snort is the current supported IDS.

4.2 Cloud Computing Platform

Cloud Computing Platform is based on two
Apache’s free Java software projects: Hadoop [8] and
HBase [9]. Hadoop is inspired by Google's MapReduce
[5] and Google File System [7] to develop a framework,
which including MapReduce and Hadoop Distributed
File System (HDFS) supports data intensive distributed
applications running on large clusters of commodity
computers. HBase is a column-oriented distributed
database modeled after Google's BigTable [3]. This
Cloud Computing platform is able to work with
thousands of nodes and petabytes of data.

Nodes, or naming data nodes, supply blocks of data
over the network using a block protocol specific to
Hadoop. They can communicate to each other to
rebalance data, to control data flow, and to maintain
the replication of data.

Distributed File System (HDFS) is a single file
system that can be distributed across several nodes
connected by network. In contrast to shared disk file
systems where all nodes have uniform direct access to
the entire storage.

Job Dispatcher (MapReduce) consists of one Job
Tracker and several Task Trackers. The Job Tracker
controls client applications and pushes work out to
available Task Tracker nodes in the cluster, striving to
keep the work as close to the data as possible. With a
rack-aware filesystem, the Job Tracker knows which
node the data lives on, and which other machines are
nearby.

Distributed Database (HBase) provides Bigtable-
like capabilities on top of Hadoop. Its goal is the
hosting of very large tables including billions of rows
with millions of columns.

4.3 IDS-log Cloud Analysis System

Regular Parser normalizes raw IDS log to form a
regular form. Each alert in IDS log file contains many
statements to specify an accident but ICAS just
extracts several important fields described in Figure 2.

Analysis Procedure consists of Data Mapper and
Data Reducer. Based on Hadoop architecture, Data
Mapper and Data Reducer are adapted for the
MapReduce infrastructure.

Data Mapper is applied to parallel every item in
the input dataset. This produces a list of (key, value)
pairs for each call. After that, the Cloud Computing
framework gathers all pairs with identity key from all
lists. After that, all pairs are grouped together and
separated into several group for each one of the
different generated keys.

Data Reducer is applied in parallel to merge data
from Data Mapper. After collect results into database.

5. Integrating IDS into Cloud Computing

Figure 4 shows the procedure of ICAS. LOG is a
log file produced by alert generator. Regular Parser,
Analysis Procedure, Data Mapper, Data Reducer are
procedure processes of ICAS. Database is distributed
database in cloud architecture. Meta file is a file
transferred into distributed file system. All of meta-
data are intermediate product of Job Dispatcher
between Data Mapper and Data Reducer.

Cloud Computing
Platform

Distributed
Database

Distributed
File

System

Data
Reducer

Data
Mapper

Regular
Parser

Analysis
Procedure

Job
Dispatcher

Alert
Generator

IDS

ICAS

Figure 4. Procedure of ICAS.

At the beginning of procedure, alert generator

collects malicious packets and stores information into
a log file. However, the log format is not trim. The
first component, Regular Parser, extracts the essential
information and discards useless data then parses as a
regular form. Next step, system would transfers the
metafile to distributed file system which splits metafile
spread every node. Job Dispatcher lunches Data
Mapper and assigns jobs to every node.

The major work of Data Reducer is to reduce the
redundancy and merge information. The reduce rule is:
if any of two alerts that destination IP and signature
are respectively the same, the two would integrate as
one and other attributes should be merged. For
example, there are six alerts in metadata shown as
table 2, and table 3 is the result. I1 and I2 are the same
approach because that attacker does the method twice
at different time. After analysis job worked, I1 and I2
reduced as R1. The different attribute, I3’s b and I4’s c,

Table 1. Initial metadata.

ID Ip_dst signature others
I1 Ip_1 A {a},{b},…
I2 Ip_1 A {a},{b},…
I3 Ip_2 A {a},{b},…
I4 Ip_2 A {a},{c},…
I5 Ip_3 A {a},{b},…
I6 Ip_3 B {a},{b},…

Table 2. Result after reduce.

ID ip_dst signature others
R1 Ip_1 A {a},{b},…
R2 Ip_2 A {a},{b, c},…
R3 Ip_3 A {a},{b},…
R4 Ip_3 B {a},{b},…

should be merged as R2’s {b, c} because they have the
same attributes, destination IP and signature. The
example is that there are two hosts using the same
method to attack one target. Any of the major
attributes, signature and destination IP, are different,
reduce job would not merge. For example, I5 and I6
are respectively on behalf of R3 and R4. This process
is specified in Figure 5. Finally, ICAS stores the
results into distributed database. In order to suit for the
functionality described in section 3, we set ip_dst as
row-key and signature as column-family to simulate
“Final_Alert”. The other field and its values are
gathered in column-qualifier.

Analysis Pseudo Algorithm:
01: INPUT: meta-data produced by Regular Parser
Log
02: generate new structure set S={s0, s1,… sn}
03: map:
04: for each line ln in LOG, do:
05: parse ln into structure sn of {ip_dst, signature,

ip_src, sig_name, sig_class_id, priority,
ip_proto, src_port, dst_port}

06: end for;
07: end map;
08: reduce:
09: loop:
10: select sa sb where sa{ip_dst, signature} is equal

to sb{ip_dst, signature}
11: if sa is equal to sb then:
12: delete sa ;
13: else: merge all sa’s fields to sb ;
14: end if;
15: until go through whole S
16: end reduce;
17: store S into Database;

Figure 5. Pseudo algorithm.

801.346

383.82374.374

1

10

100

1000

286 380 434 754 1174 1668 2182 3396 5816 6344 12698

Ale rts

A
n
a
ly

s
is

 T
im

e
 (
se

c
)

Traditional 1 nodes 2 nodes 4 nodes 6 nodes

Figure 6. Graph of analysis processing time.

Table 3. Experiment results.

6. Experimental Result

As described in section 3, the evaluation result of

that method is shown as “Traditional” in Figure 6. The
other information is the performance of ICAS
computing on different numbers of nodes, logged as 1,
2, 4 and 6 nodes. The traditional method and ICAS
use similar integration algorithm and result table
format “Final_Alert” in Figure 2. The main distinction
between the two methods is single and distributed
architecture. The other notable difference is that
traditional method lets Snort generate alerts into
MySQL then gets data from database and the ICAS
gets data from Hadoop file system by parsing raw
Snort alert files.

Figure 6 plots the analysis processing time that is
produced by the traditional method and the ICAS

using 11 data sets. These data sets, named as its
amount of alerts, are generated and released by MIT
Lincoln Laboratory [13] and professor Wu’s library of
U.C.Davis [24]. Each experimental machine is
equipped with: Intel Core 2 Quad 2.4GHz CPU, 2
Gigabytes DDR2 667 memories, 7200 RPM SATA-1
hard disk and 1Gigabits network bandwidth.

The result in Figure 6 points out that the traditional
method could complete its works rapidly while alert
number is fewer than 1174, but this method would
spend a long period to digest more than five thousand
alerts. On the contrary, ICAS has an average and short
processing time between 4 to 13 seconds. It is worth
mentioning that equipping more nodes owes better
analysis capability on general condition. However, if
alerts were fewer than 1 thousand, the ICAS with
more nodes would spend more time to handle. The
reason is that larger number of nodes should spend
more time to communicate with each other. All
detailed experiment data including reduction rate is
shown in Table 3. It proves several benefits of this
system such as more than 89 percent of the reduction
rate and less than 14 seconds of the processing time in
our experiment.

7. Conclusions and Further Research

This paper explains the architecture and software
design of ICAS, an IDS log analysis system based on
Cloud Computing architecture. This paper supplies an
idea about Cloud Computing technique in security area.

By viewing the experimental result, the ICAS is
proved with high reduction rate and computing ability.
Actually, the significant benefits to build IDS analysis
system on Cloud platform are its scalability and
reliability. Many aspects of this research need to be
improved and expanded in the future. Several avenues
of this work remain open.

Supporting More IDS Type. At present time, the
Snort is the only IDS supported by ICAS, but we
would extend the ability of Regular Parser to deal with
more IDS log type.

Easily Readable Final Report. The final report is
still a simple format, it needs to be integrated more
element, such as attack verifications, suggestion
approaches … and so on.

Enhancing and Optimizing System. The
algorithm of ICAS should be optimized and improved
to get more efficient performance.

Application on Broader Area. The cloud
architecture is provided with amazing computing
ability, we should design more functions to fit its
properties.

References

[1] D. Andersson, M. Fong, and A. Valdes, “Heterogeneous
Sensor Correlation: A Case Study of Live Traffic Analysis,”
Third Ann. IEEE Information Assurance Workshop, Jun.
2002.
[2] M. Attig and J. Lockwood, “A Framework for Rule
Processing in Reconfigurable Network Systems”, 13th Annual
IEEE Symposium, Apr. 2005.
[3] F. Chang, J. Dean and S. Ghemawat, “Bigtable: A
Distributed Storage System for Structured Data”, OSDI 2006,
Dec 2006
[4] D. E. Denning, “An Intrusion Detection Model,” IEEE
Transaction on Software Engine, Feb. 1987.
[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” OSDI 2004, Dec. 2004.
[6] EC2, “Amazon Elastic Compute Cloud”
http://www.amazon.com/gp/browse.html?node=201590011,
2008
[7] S. Ghemawat, H. Gobioff and S. Leung, “The Google File
System” SOSP 2003, Dec. 2003.
[8] D. Borthakur, “The Hadoop Distributed File System”
http://lucene.apache.org/hadoop, 2008.

[9] Hbase. “Hbase: Bigtable-like structured storage for hadoop
hdfs.” http://wiki.apache.org/lucene-hadoop/Hbase, 2008
[10] H.S. Javitz and A. Valdes, “The NIDES Statistical
Component Description and Justification,” Technical Report,
SRI Int, Mar. 1994.
[11] C. Ko, M. Ruschitzka, and K. Levitt, “Execution
Monitoring of Security-Critical Programs in Distributed
Systems: A Specification-Based Approach,” IEEE Symp.
Security and Privacy, May. 1997.
[12] C. Kruegel and G. Vigna, “Anomaly Detection of Web-
Based Attacks,” CCS ’03, Oct. 2003.
[13] MIT Lincoln Laboratory, Lincoln Lab Data Sets, http://
www.ll.mit.edu/IST/ideval/data/data_index.html, 2000.
[14] S. Lohr, “Google and I.B.M. Join in ‘Cloud Computing’
Research,” Oct. 2007.
[15] MySQL, The open source database,
http://www.MySQL.com/, 2008
[16] P.G. Neumann and P.A. Porras, “Experience with
EMERALD to Date,” First USENIX Workshop Intrusion
Detection and Network Monitoring, Apr. 1999.
[17] P. Porras, M. Fong, and A. Valdes, “A Mission-Impact-
Based Approach to INFOSEC Alarm Correlation,” the Recent
Advances in Intrusion Detection, Oct. 2002.
[18] V. Paxson, “Bro: A System for Detecting Network
Intruders in Real-Time,” Seventh USENIX Security Symp.,
Jan. 1998
[19] M. Roesch, “Snort—Lightweight Intrusion Detection for
Networks,”Proc. USENIX LISA ’99 Conf., Nov. 1999
[20] A. Valdes and K. Skinner, “An Approach to Sensor
Correlation,”Proc. Recent Advances in Intrusion Detection,
Oct. 2000.
[21] A. Valdes and K. Skinner, “Probabilistic Alert
Correlation,” Recent Advances in Intrusion Detection, Oct.
2001.
[22] M. A. Vouk, "Cloud Computing – Issues, Research and
Implementations," Proceedings of the ITI 2008, Jun. 2008.
[23] Fredrik Valeur, Giovanni Vigna and Richard A.
Kemmerer, “A Comprehensive Approach to Intrusion”, IEEE
Transactions on Dependable and Secure Computing, Jul. 2004
[24] Felix Wu laboratory, “TCPdump Data Sets,”
http://www.cs.ucdavis.edu/%7Ewu/tcpdump/, 2005
[25] Y. S. Wu, B. Foo, Y. Mei, and S. Bagchi. “Collaborative
intrusion detection system (CIDS): a framework for accurate
and efficient IDS,” Computer Security Applications
Conference, Dec. 2003.
[26] Yahoo, "Hadoop and Distributed Computing at Yahoo!"
http://developer.yahoo.com/blogs/hadoop/, 2008
[27] A. T. Zhou, J. Blustein, and N. Zincir-Heywood.
“Improving Intrusion Detection Systems through Heuristic
Evaluation;” Electrical and Computer Engineering, May. 2004.

