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Abstract
This IBM® Redpaper describes a case study in which an IBM System Blue Gene® Solution 
supercomputer is configured to natively access General Parallel File System (GPFS) 2.3 file 
systems that are owned by an IBM eServer™ pSeries® cluster with AIX 5L and the IBM 
eServer High Performance Switch (eHPS). The IBM System Blue Gene Solution service 
node (SN), front-end nodes (FENs), and I/O nodes (IONs) are configured as one GPFS 
cluster that does not contain any GPFS file systems. The pSeries cluster makes its GPFS file 
systems available to the Blue Gene system through the GPFS multicluster (GPFS-MC) 
functionality.

The study is performed in a customer environment where both systems are already operating 
in production: the Research Center Jülich (FZJ), Germany, operates a large POWER4+™ 
based AIX 5L cluster nicknamed “JUMP”, and an 8-rack Blue Gene system nicknamed 
“JUBL”. The JUMP cluster is already part of an existing wide-area GPFS multicluster 
setup—it is one of the DEISA.org sites. The Blue Gene system is added to this multicluster 
environment as an additional GPFS cluster.

Michael Hennecke
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Introduction
GPFS is available for the IBM System Blue Gene Solution through a special-bid process: 
RPQ P91224, product number 5799-HCK. As outlined in the GPFS HOWTO for BlueGene 
that is shipped with the RPQ software, GPFS on the IBM System Blue Gene Solution is 
always implemented as a GPFS multicluster setup that includes two separate GPFS clusters:

� The SN, FEN(s) and Blue Gene IONs form one GPFS cluster, which itself does not 
contain any GPFS file systems but accesses the file systems of a second GPFS cluster. 
We call this cluster the client cluster or local cluster; it is named bgIO in the GPFS 
HOWTO.

� The file systems are provided by a second GPFS cluster, the owning cluster or remote 
cluster. This cluster is called gpfsNSD in the GPFS HOWTO. There are broadly two types 
of Blue Gene installations that exploit GPFS, which differ in the way the owning GPFS 
cluster is set up:

– Standalone Blue Gene systems

For these systems, the file servers are configured and installed together with the rest of 
the Blue Gene system. They are sized specifically for the Blue Gene environment, and 
are directly connected to the Blue Gene I/O network (called the functional network in 
the Blue Gene documentation), by one or more Gigabit Ethernet links per server.

a. Blue Gene systems in heterogeneous environments

In these environments, the GPFS file systems reside on a separate cluster. This 
cluster typically has its own high-performance interconnect, and the GPFS file servers 
are sized for and connected to that interconnect. This case is more complex than the 
standalone case for two reasons:

• Network connectivity has to be established between the two clusters, whereas in 
the standalone case both clusters are on the same switched Ethernet network.

• Sizing of the file servers is not specific to Blue Gene and its (1 Gbps Ethernet 
based) I/O network. For example, the IBM eServer HPS provides 4 GByte/sec 
bidirectional bandwidth per link, normally with two links per node, and the GPFS 
servers on this interconnect are typically more powerful than those sized for 
standalone Blue Gene systems. This affects network design and tuning.

In this case study we describe the GPFS implementation in a heterogeneous environment, 
where the owning cluster is an IBM eServer pSeries cluster with AIX 5L and the eHPS 
interconnect. We discuss the extra planning and implementation steps that are needed for 
such a setup. Most of the specifics of this Redpaper do apply to both scenarios. It is intended 
to complement the GPFS HOWTO for Blue Gene by discussing a specific example for a 
typical supercomputing center.

In “Hardware setup” on page 3 we describe the hardware configuration of the clusters, 
including their physical connections. The software aspects of the network are covered in 
“Network configuration” on page 5. This includes hostnames, EtherChannel setup, and 
routing. These two sections are the prerequisites for “SSH setup for the Blue Gene GPFS 
cluster” on page 15, and “GPFS software installation” on page 20, which explain both how to 
create the Blue Gene GPFS cluster and how to establish the cross-cluster access. In “Tools 
for performance testing” on page 34 we present the steps that were taken to verify the 
performance of the solution, and our case study is wrapped up in “Summary” on page 42.
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Hardware setup
The hardware configuration of the clusters evolved over time, with three main steps shown 
from left to right in Figure 1 on page 4. Here we briefly describe the overall hardware setup; 
configuration details are discussed in the sections that follow.

1. The pSeries cluster (nicknamed “JUMP”) was installed with AIX 5L and the eServer HPS 
switch as its high-speed interconnect. Each node (LPAR) has two links into the eHPS 
network. The IP name of a node’s interface into the eHPS network is its hostname with a 
suffix of “f”. Most nodes are compute nodes, like node cn01 with its eHPS interface cn01f. 
In addition, there are four disk server nodes with Fiber Channel (FC) connections to disk 
storage subsystems, with IP names nsd01f, nsd02f, nsd03f, and nsd04f on the eHPS 
network. Not shown are the login nodes (with network connections to a user LAN) and a 
few other server nodes. GPFS on this cluster started with version 2.1, and uses the Virtual 
Shared Disk (VSD) layer over the eHPS switch. When the cluster was migrated to GPFS 
Version 2.3, Network Shared Disk (NSD) devices were configured on top of the existing 
VSDs.

2. When the cluster joined the DEISA Grid (see www.deisa.org) with its GPFS multicluster 
infrastructure, all nodes in the eHPS cluster needed TCP/IP connectivity to the other 
clusters on that Wide Area Network (WAN). This is discussed in detail later on. 

There were two options for achieving this connectivity: Route this traffic through a gateway 
node within the pSeries/eHPS cluster, or connect all nodes to an additional external 
switch, which then routes the traffic to the WAN. The second approach was chosen. Each 
node received a 1 Gbps Ethernet adapter; the IP name of that interface is the hostname 
plus a suffix “m”. These are connected to a DEISA GigaBit switch/router shown in the 
center of Figure 1 on page 4. Routing is discussed in “Routing setup for cross-cluster 
connectivity” on page 12.

Note: Make sure that you define primary and backup NSD servers for the NSDs that 
are created on top of the VSDs. Although this is not necessary within the eHPS cluster 
(because the underlying VSDs have primary and backup VSD servers defined), you will 
observe very strange errors when trying to access these NSDs from remote clusters. 
You can use the mmlsnsd -f <filesystem> command to verify that NSD servers are 
configured.
 GPFS Multicluster with the IBM System Blue Gene Solution and eHPS Clusters 3



Figure 1   Networking setup of the pSeries/eHPS and BlueGene clusters

3. Recently, an 8-rack IBM System Blue Gene Solution was installed, nicknamed “JUBL”. 
The I/O network of Blue Gene is a 1 Gbps Ethernet network. Each Blue Gene I/O node 
has a single copper 1 Gbps port, and all IONs are connected to a Blue Gene GigaBit 
switch shown on the right of Figure 1. The machine’s service node (SN) and front-end 
node (FEN) are also on that network, and since they are external IBM OpenPower™ 
servers, they could be configured with multiple 1 Gbps adapters. SN and FEN also have 
connections to a user LAN and an administrative LAN, which are not important for the 
current discussion.

4. To make the GPFS file systems of the pSeries/eHPS cluster available to the Blue Gene 
cluster, all nodes on one side again needed TCP/IP connectivity to all nodes on the other 
side. As for the DEISA setup, there were several options to implement this. The solution 
that was chosen was twofold:

a. Connect the DEISA switch/router to the Blue Gene switch. Connectivity of all nodes on 
both sides can then be obtained by a suitable routing configuration, but bandwidth is 
limited by the inter-switch link. This link is used for GPFS control traffic.

b. To improve the bandwidth of GPFS data traffic, the four NSD server nodes in the 
pSeries/eHPS cluster were directly connected into the Blue Gene switch. On each 
node, four 1 Gbps links combined into a 4x EtherChannel were added, and connected 
to the Blue Gene switch. The bandwidth of this setup roughly matches the disk 
bandwidth available from the storage subsystems.

These two additional connections are shown on the bottom of Figure 1. The IP interfaces 
on the Blue Gene network are indicated by a “b” suffix, except for the IONs, which have 
only one network interface and where we follow a Blue Gene “physical location code” 
naming convention.
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In the following sections, we discuss the networking configuration steps based on the above 
hardware setup.

Network configuration
In this section we discuss the following topics: 

� The setup of hostnames for the IONs

� Configuring EtherChannel (called channel bonding under Linux®) to increase the 
bandwidth of the pSeries servers’ Ethernet connections

� Establishing routing between all the components

� Configuring various network services on the IONs

IP names and addresses of the Blue Gene I/O nodes
Blue Gene uses a Gigabit Ethernet network as its I/O network (called the functional network 
in the Blue Gene documentation). The SN, FEN(s), and IONs are all directly connected into 
this network. Here we use a supernet consisting of four consecutive class-C networks to be 
able to accommodate 512 IONs and the external servers, even though we currently use only 
256+32=288 IONs as detailed below. This I/O network is 222.444.666/22.

We strongly recommend that the Blue Gene IONs get their IP addresses on the Blue Gene 
I/O network statically assigned, and also have meaningful IP names set up. There are three 
places where this information needs to be stored:

� The /discovery/runPopIpPool script populates the DB2® table BglIpPool during 
installation. It is possible to specify Blue Gene physical location codes for the IP 
addresses as follows:

db2 "INSERT INTO BglIpPool (location,machineserialnumber,ipAddress)
VALUES('R00-M0-N0-I:J18-U11','BGL','222.444.666.33')"

db2 "INSERT INTO BglIpPool (location,machineserialnumber,ipAddress)
VALUES('R00-M0-N0-I:J18-U01','BGL','222.444.666.34')"

...

If you have not assigned physical location codes to the IP addresses when initially setting 
up this DB2 table, you should still be able to add them later. Refer to the first part of the 
“Support for Subnets” section in the ionode.README for details.

� The /etc/hosts file. We add IP addresses, and long and short IP names as follows:

222.444.666.33 R00-M0-N0-3.your-domain.org R00-M0-N0-3
222.444.666.34 R00-M0-N0-4.your-domain.org R00-M0-N0-4
...

You need to update the hosts file in the following places:

a. The /etc/hosts file on the SN and on the FEN(s).
We recommend that you generate it on the SN, and then copy it to the FEN(s).

b. The IONs also need access to a copy of the /etc/hosts file.
On the SN, copy it to the location in /bgl/ where the startup rc-scripts expect it:

Note: These steps are: (1) delete the BglIpPool table, (2) recreate it with the desired 
settings, (3) set the IpAddress field in the BglNode table to NULL, and (4) re-run 
PostDiscovery.
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root@SN> cp -p /etc/hosts /bgl/dist/etc/hosts

c. The /etc/hosts files on all nodes of the pSeries cluster (which owns the GPFS file 
systems) would also need to be updated, or you may rely on DNS on the pSeries side. 
We prefer to use DNS on the remote cluster for easier maintainability.

� DNS. The Linux host command always queries DNS, not the local /etc/hosts file (it does 
not honor the /etc/nsswitch.conf or /etc/host.conf settings). Since mmaddnode invokes the 
host command, all IONs must be known to DNS to enable them to be added to the GPFS 
cluster.

In a Blue Gene node card, location J19 is the leftmost I/O card and J18 is the rightmost I/O 
card, each with two I/O nodes, U01 and U11. Figure 2 shows the RJ45 Ethernet connectors 
labeled “1” to “4” on the front of a node card, corresponding to I:J19-U11, I:J19-U0, I:J18-U11 
and I:J18-U01. We prefer to use the node card location code plus the Ethernet connector 
number as hostnames.

Figure 2   Ethernet ports on a Blue Gene node card

As shown in Figure 1 on page 4, the SN, the FEN, and the four NSD servers of the pSeries 
cluster are also on the Blue Gene I/O network, and these interfaces should also be added to 
the /etc/hosts file and DNS:

222.444.666.202   nsd01b.your-domain.org nsd01b
222.444.666.203   nsd02b.your-domain.org nsd02b
222.444.666.205   nsd03b.your-domain.org nsd03b
222.444.666.206   nsd04b.your-domain.org nsd04b
222.444.666.220   SN-b.your-domain.org SN-b
222.444.666.221   FEN-b.your-domain.org FEN-b

Finally, the DEISA switch/router has a leg into the Blue Gene I/O network. This interface is 
assigned the IP address 222.444.666.1 and an IP name of deisa-b.

EtherChannel (or channel bonding) setup
The predominant I/O pattern in a Blue Gene system is hundreds of IONs with a single 1 Gbps 
Ethernet link accessing a high-bandwidth GPFS file system served by a pool of relatively few 
GPFS/NSD server nodes. For balanced performance, these NSD servers need more than 
one gigabit of network bandwidth. There are two options for achieving this:

� Use 10 Gbps adapters, which have a higher bandwidth.

� Combine multiple 1 Gbps links into an EtherChannel (bonding device under Linux).

Based on the available hardware (POWER4+ servers with their I/O drawers; Ethernet 
adapters; switch linecards), we decided to use the second approach because a 10 Gbps 

Note: It is beneficial to use hostnames that can easily be written with wildcards. An 
example is the creation of SSH known hosts files, which is discussed below.
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solution would have been more expensive with only slightly better performance. On the NSD 
servers, we combine four 1 Gbps Ethernet links into an AIX 5L EtherChannel. This roughly 
matches the bandwidth that can be delivered by the storage attached to the NSD server (and 
could be increased to eight links per EtherChannel if needed). This configuration is shown in 
the left half of Figure 3 on page 7.

On the SN and FEN(s), we create a Linux bonding device with two links. This is useful if users 
want to quickly copy data into and out of the GPFS file systems on these nodes. The steps 
described below can also be used as a reference when the NSD servers are running Linux, 
which is typical for standalone Blue Gene systems. The right half of Figure 3 shows the SN 
and FEN(s) accessing the NSD servers.

Figure 3   Ethernet channel bonding: IONs to NSD servers (left); SN and FEN to NSD servers (right)

We also indicate in Figure 3 which ports of the servers/switches need to be configured as 
EtherChannels, separately for file system read and write operations:

� ION read is controlled by the AIX 5L 4x EtherChannel setup of the NSD server.

� ION write is controlled by the Cisco/CatOS setup of the 4x channel to the NSD server.

� FEN read is controlled by:

– The AIX 5L 4x EtherChannel setup of the NSD server, and
– The Cisco/CatOS setup of the 2x EtherChannel to the FEN

� FEN write is controlled by:

– The Linux/SLES9 2x channel bonding setup of the FEN, and
– The Cisco/CatOS setup of the 4x EtherChannel to the NSD server

� The SN setup corresponds to the FEN setup.

Before describing the configuration steps in detail, some general remarks are useful as a 
motivation for our configuration. Channel bonding generally serves two purposes:

� Increasing availability by providing multiple, redundant paths between endpoints.

� Increasing bandwidth by utilizing multiple links in parallel. This can be further divided into 
two very different usage scenarios:

a. Single-stream performance, where a single connection needs higher bandwidth than 
one Ethernet link can provide

b. Aggregate performance, where multiple streams in parallel use more than one link
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Here we only focus on bandwidth, and the gain in availability is a welcome side effect. 
Ignoring all modes that are specifically used for high availability, there are two general modes 
of operation that address the two usage scenarios:

a. Round-robin distribution of Ethernet packets across all (active) ports in a channel.

b. Deterministic forwarding of Ethernet packets using a hash function: All packets of a 
connection are forwarded to the same (active) port in a channel, which is determined by 
a hash function that may use source and destination MAC address, IP address, port 
number, or any combination thereof.

Obviously, only the round-robin mode can improve single-stream performance. But it also 
carries the risk that packets arrive out-of-order, which in the worst case would cause TCP/IP 
congestion control to slow down the connection after excessive retransmits. In addition, 
round-robin mode is not supported on the Cisco switches used here. So we decided to not 
use round-robin mode at all, even though it may be beneficial for single-stream file accesses 
from the FEN(s).

The more important case is a parallel job that uses many IONs to access GPFS, so there are 
many parallel connections to each of the NSD servers (assuming large block sequential I/O 
with files that are larger than 4x the GPFS file system block size, so the files will be striped 
across all four NSD servers). As each of the IONs has only a single 1 Gbps connection 
anyway, it is the aggregate performance that matters and a deterministic channeling mode is 
appropriate. Such a mode will always deliver packets in order, reducing the likelihood of 
congestion. Note that the three different platforms (AIX 5L, SLES9 Linux, and Cisco CatOS) 
have slightly different options to set up the hash function. This is described below.

Setting up EtherChannel on the AIX 5L NSD servers
EtherChannel setup for AIX 5L is described in AIX System Management Guide: 
Communications and Networks, section “EtherChannel and IEEE 802.3ad Link Aggregation”. 
It can be found in the pSeries Information center at:

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.
aix.doc/aixbman/commadmn/tcp_etherchannel.htm

When data is read from GPFS, the AIX 5L configuration of the EtherChannel controls how 
packets are sent out. There are two parameters, mode and hashmode, that control how the 
EtherChannel operates. There are three mode settings:

� mode=round_robin (requires hashmode=default)
This mode fully utilizes all links in the channel by sending packets in a round-robin mode 
across all links. It is good for back-to-back connections of two servers by an 
EtherChannel, but in our scenario it is problematic as described above.

� mode=standard
This mode guarantees in-order delivery of packets, but may not optimally utilize the 
available bandwidth. It sends all packets for a single connection over the same link in the 
EtherChannel. The hash_mode parameter controls the detailed algorithm of selecting this 
link:

– hashmode=default
Divide the lowest byte of the destination IP address (MAC address for non-IP traffic) by 
the number of (active) links in the channel. The remainder is the selected link number.

– hashmode=src_dst_port
Add the source and destination port numbers of the TCP connection, divide it by 2, 
truncate to integer, and divide by the number of (active) links in the channel. Again, the 
remainder is the selected link number.
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– hashmode=src_port and hashmode=dst_port
Same as src_dst_port but using only one of the two ports in the calculation.

Note that the adapters are enumerated in the order they are listed in the adapter_names 
attribute when configuring the EtherChannel, not by their ethX number.

� mode=8023ad is similar to standard mode, except that it enables the use of the IEEE 
802.3ad Link Aggregation Control Protocol (LACP) for automatic link aggregation.

Figure 4   AIX 5L EtherChannel configuration with smitty

As shown in Figure 4, we used the smitty etherchannel command to configure the channel, 
using standard mode and a hashmode of src_dst_port. For our usage scenario, where the 
AIX 5L LPAR owns the file systems, the source port will always be 1191 (the port the mmfsd 
daemon listens on). But using both the source and destination port also supports the reverse 
case where the AIX 5L side accesses a file system on a remote cluster (in which case the 
destination port would always be 1191). Note that the channel mode and hashmode can be 
conveniently changed while the channel is active. The adapters that constitute the channel 
are listed in the adapter_names attribute, as a list of ethX device names. To map the device 
names to physical location codes, you can use the AIX 5L lscfg|grep ent command:

sysadmin@nsd01> lscfg|grep ent|sort
+ ent0             U1.5-P1-I1/E1 10/100 Mbps Ethernet PCI Adapter II 
(1410ff01)
+ ent1             U1.5-P1-I6/E1 Gigabit Ethernet-SX PCI-X Adapter (14106802)
+ ent2             U1.1-P1-I5/E2 2-Port 10/100/1000 Base-TX PCI-X Adapter 
(14108902)
+ ent3             U1.1-P1-I5/E1 2-Port 10/100/1000 Base-TX PCI-X Adapter 
(14108902)
+ ent4             U1.1-P1-I7/E2 2-Port 10/100/1000 Base-TX PCI-X Adapter 
(14108902)
+ ent5             U1.1-P1-I7/E1 2-Port 10/100/1000 Base-TX PCI-X Adapter 
(14108902)
 GPFS Multicluster with the IBM System Blue Gene Solution and eHPS Clusters 9



+ ent6             U1.1-P1-I9/E1 10 Gigabit-LR Ethernet PCI-X Adapter 
(1410bb02)

Here we used the four ports on the two adapters in locations U1.1-P1-I5 and U1.1-P1-I7.

Setting up Linux bonding on the SN and FEN(s)
Linux provides channeling through the bonding driver, which is loaded as a module. The 
primary documentation is the Linux Ethernet Bonding Driver HOWTO. The driver has two 
modes of operation that are relevant to this study:

� mode=balance-xor:
This is the Linux version of deterministic packet forwarding based on a hash function. 
Linux uses an XOR policy: the port is calculated based on (source MAC address XOR'd 
with destination MAC address) modulo slave port count. This selects the same slave port 
for each destination MAC address.

� mode=balance-rr:
This is the Linux version of round-robin mode. We do not use it, but in case you plan to 
use balance-rr, the Bonding Driver HOWTO has some tips on how to adjust TCP/IP’s 
congestion limits. It also contains a warning that for TCP traffic, you should not expect 
more than 2.3x worth of bandwidth in a balance-rr channel even if more links are added.

The bonding mode can be set as an option to the bonding module. You should also set the 
miimon option, which controls the time intervals in which the kernel checks link status. The 
Bonding Driver HOWTO recommends to use miimon=100 and mode=balance-rr. As 
explained above we prefer miimon=100 and mode=balance-xor. Here are the contents of our 
bond0 configuration file on the SN, similar on the FEN(s):

sysadmin@SN> cat /etc/sysconfig/network/ifcfg-bond0

BOOTPROTO='static'
BROADCAST='222.444.669.255'
IPADDR='222.444.666.220'
MTU=''
NETMASK='255.255.252.0'
NETWORK='222.444.666.0'
REMOTE_IPADDR=''
STARTMODE='onboot'
UNIQUE='lzs7.+0LdIaFhUB0'
_nm_name='bus-pci-0001:d8:01.0'
BONDING_MASTER=yes
BONDING_MODULE_OPTS='miimon=100 mode=balance-xor'
BONDING_SLAVE0="eth-id-00:11:22:33:44:6A"
BONDING_SLAVE1="eth-id-00:11:22:33:44:6B"

Here the slave adapters are identified by MAC address. To map ethX device names to 
physical locations, you can use the lscfg command. This is part of the lsvpd RPM that ships 
on CD3 of the SLES9 for POWER™ distribution, but is not installed by default. We 
recommend that you always install this RPM, which provides a number of hardware-related 
functions similar to what is known from AIX 5L:

sysadmin@SN> rpm -qa|grep lsvpd
lsvpd-0.14.1-1
sysadmin@SN> lscfg|grep eth
+ eth500           U787B.001.DNW5D09-P1-C3-T1
+ eth501           U787B.001.DNW5D09-P1-C3-T2
+ eth502           U787B.001.DNW5D09-P1-C4-T1
+ eth503           U787B.001.DNW5D09-P1-C4-T2
10 GPFS Multicluster with the IBM System Blue Gene Solution and eHPS Clusters



+ eth504           U787B.001.DNW5D09-P1-T9
+ eth505           U787B.001.DNW5D09-P1-T10
+ eth506           U787B.001.DNW5D09-P1-C2-T1
+ eth507           U787B.001.DNW5D09-P1-C2-T2

We want to use the two ports of the adapter in location U787B.001.DNW5D09-P1-C2. The 
MAC address of a device ethX can be found in the ifconfig ethX output, but only if it is not 
already enslaved in a bonding device:

sysadmin@SN:/etc/sysconfig/network> ifconfig|grep "eth[67]"
eth6      Link encap:Ethernet  HWaddr 00:11:22:33:44:6A
eth7      Link encap:Ethernet  HWaddr 00:11:22:33:44:6B

As a reminder that the individual Ethernet devices are enslaved in a channel, we create 
placeholder configuration files for them in /etc/sysconfig/network/, as follows:

sysadmin@SN:/etc/sysconfig/network> cat ifcfg-eth-id-00:11:22:33:44:6A
BOOTPROTO='none'
STARTMODE='off'

sysadmin@SN:/etc/sysconfig/network> cat ifcfg-eth-id-00:11:22:33:44:6B
BOOTPROTO='none'
STARTMODE='off'

Looking at the HWaddr of the interfaces in ifconfig after the channel has been brought up, you 
can see that the bond0 channel has enslaved eth6 and eth7, as they have the same MAC 
address as the bonding device. By default, a bonding device inherits its MAC address from 
the first slave, and sets this on all slaves:

sysadmin@SN:/etc/sysconfig/network> ifconfig|grep"HWaddr"
bond0     Link encap:Ethernet  HWaddr 00:11:22:33:44:6A
eth0      Link encap:Ethernet  HWaddr 00:11:22:33:44:6C
eth1      Link encap:Ethernet  HWaddr 00:11:22:33:44:6D
eth2      Link encap:Ethernet  HWaddr 00:11:22:33:44:7A
eth3      Link encap:Ethernet  HWaddr 00:11:22:33:44:7B
eth5      Link encap:Ethernet  HWaddr 00:11:66:44:33:7F
eth6      Link encap:Ethernet  HWaddr 00:11:22:33:44:6A
eth7      Link encap:Ethernet  HWaddr 00:11:22:33:44:6A

EtherChannel on Cisco
We do not cover Cisco configuration in detail, but only provide references to some of the 
commands used to configure the EtherChannels:

� Be aware that Cisco supports two EtherChannel protocols: Port Aggregation Protocol 
(PAgP), which is a Cisco-proprietary protocol and can only be used across Cisco 

Note: We have observed that after upgrades to the Linux kernel, lscfg sometimes reports 
the device ethX as eth50X, as in the output above. This is an artifact of the lscfg 
command only; the device is still ethX. This bug can be fixed by either manually 
subtracting 500 from the lscfg output, or by reapplying the latest patch level of the lsvpd 
RPM.

Attention: At our software level, the SLES9 configuration tool yast could not handle 
channel bonding and even corrupted already existing configurations. We recommend that 
you do not use these tools for network interface configuration if you use channel bonding, 
but rather perform all configuration through the configuration files in 
/etc/sysconfig/network/.
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switches, and Link Aggregation Protocol (LACP), which is the standard IEEE 802.3ad 
protocol. Make sure that you use LACP. This can be set on a per linecard (“module”) basis 
by the set channelprotocol lacp command.

� You can set the hashing algorithm with the set port channel all distribution {ip | 
mac | session | ip-vlan-session} [source | destination | both] command, with 
obvious meanings of the attributes (in Cisco terminology, a session is the port number).

� Use the show lacp channel hash command to manually verify which port is used for a 
specific combination of source/destination MAC/address/session values.

� Statistics on the channel can be displayed by the show lacp-channel traffic command.

For details on these commands, refer to the Cisco documentation in “References” on 
page 43.

Routing setup for cross-cluster connectivity
In a GPFS 2.3 multicluster environment, every GPFS node in each cluster needs TCP/IP 
connectivity to every GPFS node in all of the clusters. The main reason for this is that the 
node that first opens a file will become the GPFS metadata manager for that file, and other 
nodes that want to access that file need to communicate with it. For multi-homed nodes 
(nodes that are connected into more than one network), exactly one interface is used when a 
GPFS 2.3 cluster is set up, and the above connectivity statement applies to this interface (and 
its corresponding IP address and IP name).

This implies that all IONs, the SN and FEN need to be able to contact the eHPS interface of 
each “JUMP” node (with suffix “f”), and those nodes need to be able to communicate with the 
IONs, SN and FEN on the Blue Gene I/O network (SN and FEN with suffix “b”). The physical 
connection has been made as described in Figure 1 on page 4. To complete the configuration 
we need to set up suitable routing.

Routing on the pSeries/eHPS cluster
On the pSeries side there are two different cases:

� On the four NSD servers, nothing needs to be done because they have a direct 
connection into the Blue Gene I/O network. These four nodes will contact GPFS nodes in 
the Blue Gene cluster through their local interface in the 222.444.666/22 network:

222.444.666.0 222.444.666.202 UHSb 0        0  en7 -   - - =>
222.444.666/22 222.444.666.202 U 2 44642474  en7 -   - -
222.444.669.255 222.444.666.202 UHSb 0        2  en7 -   - -

� On all other nodes in the pSeries cluster, we add a route to the 222.444.666/22 network 
through the DEISA switch/router. On the DEISA Gigabit, that switch/router has the 
address 111.222.444.1 and all pSeries nodes know that they can reach this address 
through their own local interface on the 111.222.444/24 network.

In AIX 5L, adding the network route can be done through smitty mkroute, which will invoke 
chdev -l inet0 to permanently add the route to the ODM (the route add command will not 
be persistent). Here is the netstat -rn output for the 64/22 network:

222.444.666/22     111.222.444.1    UGc  0        0  en1 -   -      -

Note: GPFS version 3.1 introduces several new features, including support for multiple 
subnets. This is advantageous for GPFS configurations on multi-homed hosts and GPFS 
multiclusters.
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Routing on the Blue Gene SN and FEN(s)
On the SN and FEN(s) that run SLES9, routing can be set up in the routes file in the 
/etc/sysconfig/network/ directory. We set up a network route to the eHPS network through 
gateway 222.444.666.1, which is the DEISA switch/router’s leg into the Blue Gene I/O 
network. To utilize the direct connections to the four NSD servers, we add host routes to their 
eHPS interfaces through their interfaces on the Blue Gene I/O network. Host routes are more 
specific than network routes and are thus preferred.

sysadmin@SN:/etc/sysconfig/network> cat /etc/sysconfig/network/routes
...
111.222.333.0 222.444.666.1 255.255.255.0 -
111.222.333.202 222.444.666.202 255.255.255.255 -
111.222.333.203 222.444.666.203 255.255.255.255 -
111.222.333.205 222.444.666.205 255.255.255.255 -
111.222.333.206 222.444.666.206 255.255.255.255 -

After activating these settings, the routes can be verified with the route command.

Routing on the Blue Gene IONs
For the IONs, which are network booted, routing can be set up through an rc-script that is 
placed into the $BGL_SITEDISTDIR directory on the SN (typically /bgl/dist/). We add the 
same routes as on the SN and FEN(s):

sysadmin@SN> cat /bgl/dist/etc/rc.d/rc3.d/S14routes_to_federation

#!/bin/sh
# network route to federation network:
/sbin/route add -net  111.222.333.0 netmask 255.255.255.0 gw 222.444.666.1

# host routes to federation interfaces of I/O nodes via their BlueGene 
interfaces:
# (specified host routes have preference over above network route)
/sbin/route add -host 111.222.333.202 gw 222.444.666.202 # nsd01f
/sbin/route add -host 111.222.333.203 gw 222.444.666.203 # nsd02f
/sbin/route add -host 111.222.333.205 gw 222.444.666.205 # nsd03f
/sbin/route add -host 111.222.333.206 gw 222.444.666.206 # nsd04f

# show new routing table:
/bin/netstat -rn

To verify that it works, check the IONs logfile at $BGLLOGS/R??-M?-N?-I:J1?-U?1.log for the 
output of the netstat -rn command. After the SSH setup is complete (see next section), root 
on the SN could also log in to IONs which are part of currently booted partitions, and verify 
that the routing has been correctly set up with the /sbin/route command.

Routing on the Cisco switches
There are two Cisco switches involved: the DEISA switch/router and the Blue Gene switch.

DEISA switch/router
The DEISA switch/router, “deisa”, connects the pSeries cluster with the other DEISA sites 
and the new Blue Gene system. For the purpose of this discussion, it has two interfaces:

� A router interface 111.222.444.1 on the pSeries cluster’s Ethernet (“m” suffix). This 
address is used as the gateway for all multicluster traffic on the pSeries side. 

� The DEISA switch/router also has a leg into the Blue Gene network, with IP address 
222.444.666.1 and IP name deisa-b (“b” suffix). This address is used as the gateway for 
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multicluster traffic on the Blue Gene side (with the exception of the NSD servers, which 
have direct connectivity to the Blue Gene Ethernet).

Cisco then routes traffic for the Blue Gene network 222.444.666/22 to address 
222.444.666.1, which is its own leg into the Blue Gene network, named deisa-b. Packets 
addressed to the eHPS interfaces of the pSeries cluster (“f” suffix) are routed to that node’s 
Ethernet interface (“m” suffix) through the 111.222.444.1 interface on the switch/router.

Blue Gene switch
The Blue Gene I/O network is only switched, and does not need any routing setup on the Blue 
Gene Cisco switch, zam870. The Blue Gene cluster nodes use 222.444.666.1 as their 
gateway to the pSeries cluster. This is the DEISA switch/router’s leg on the Blue Gene 
network, and the DEISA switch/router does all the routing as described above.

Other network-related customization
The final network-related setup step is to verify that several network services that are needed 
on the IONs (or are at least convenient to have) are correctly set up.

TCP/IP tuning
The usual TCP/IP tunables should be adapted to achieve higher bandwidth. We do this 
through a new startup-script in $BGL_SITEDISTDIR, using the values recommended in the 
GPFS documentation:

sysadmin@SN> cat /bgl/dist/etc/rc.d/rc3.d/S09etc_sysctl_conf

#!/bin/sh
cat <<E_O_F >> /etc/sysctl.conf
#BEGIN tuning for GPFS
net.core.rmem_max = 8388608
net.core.wmem_max = 8388608
net.ipv4.tcp_rmem = 4096 262144 8388608
net.ipv4.tcp_wmem = 4096 262144 8388608
net.core.netdev_max_backlog = 2500
#END tuning for GPFS
E_O_F
sysctl -p

By invoking sysctl -p we enforce a reload of the configuration to ensure that the updated 
values in the configuration file /etc/sysctl.conf become effective.

Network Time Protocol
In a cluster, synchronizing time is critical. While the Blue Gene system software ships with 
NTP installed by default, it may be necessary to generate an /etc/ntp.conf file that works for 
your environment. For example:

sysadmin@SN> cat /bgl/dist/etc/rc.d/rc3.d/S14etc_ntp_conf

#!/bin/sh

Note: Similar routing needs to be set up for all other DEISA sites, even if they do not share 
any file systems with the Blue Gene system. The fact that the pSeries cluster shares some 
file systems with DEISA and some other file systems with Blue Gene necessitates this 
any-to-any connectivity. This configuration has been omitted here, but it is essential for 
stable operation of the GPFS 2.3 multicluster. This requirement is relaxed with GPFS 3.1.
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echo "restrict default nomodify" >  /etc/ntp.conf
echo "server 222.444.666.220" >> /etc/ntp.conf
echo "authenticate no" >> /etc/ntp.conf

Here the server is the Blue Gene Service Node. If you use another NTP server, you also need 
to establish routing to that server from the IONs.

Name resolution
Although all Blue Gene IP addresses and names have been added to /etc/hosts, it is useful to 
have DNS name resolution working on the IONs. Simply create the /etc/resolv.conf file (and 
make sure routes to your DNS servers exist), and name resolution should work as usual:

sysadmin@SN> cat /bgl/dist/etc/rc.d/rc3.d/S14etc_resolv_conf

#!/bin/sh
echo "nameserver 111.333.555.2" >  /etc/resolv.conf
echo "nameserver 111.333.555.3" >> /etc/resolv.conf
echo "nameserver 111.333.555.4" >> /etc/resolv.conf
echo "search your-domain.org your-domain.org" >> /etc/resolv.conf

Blue Gene CIOD tuning
One final area that needs customization is the CIOD daemon that runs on the IONs. The 
CIOD daemon is responsible for forwarding of I/O traffic between the compute nodes and the 
Ethernet interface of their pSet’s ION. It creates one memory buffer for each compute node 
CPU (two per node to accommodate virtual node mode). The size of this buffer should ideally 
match the size of the I/O operations. We set it to the file system blocksize of our GPFS file 
systems, which is 1 MB, and also experimented with twice that size:

sysadmin@SN> cat /bgl/dist/etc/rc.d/rc3.d/S10fzj_sysconfig

#!/bin/sh
...
echo "export CIOD_RDWR_BUFFER_SIZE=2097152" >> /etc/sysconfig/ciod
echo "export DEBUG_SOCKET_STARTUP=ALL"      >> /etc/sysconfig/ciod

This configuration file and the available options are described in the ionode.README for the 
Blue Gene system software.

SSH setup for the Blue Gene GPFS cluster
All nodes within a GPFS cluster must be able to communicate via rsh or ssh. Under Linux the 
default is to use ssh. This has to be configured for the Blue Gene cluster, so the root user on 
each GPFS node in that cluster can ssh to any other node in that cluster without prompting for 
a password.

There are three different types of public/private key pairs involved:

� An SSH daemon’s key, used to authenticate a host in ssh connections.

� A (root) user’s personal SSH key, used to authenticate a (root) user in ssh connections.

Note: There is no requirement for ssh access between clusters. All inter-cluster 
communication is handled by the mmfsd daemons (which internally use SSL).
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� An SSL key, used to authenticate an application. In this case, the application is the mmfsd 
daemon on one GPFS cluster, communicating with the mmfsd daemon on another GPFS 
cluster.

Here we describe the setup of the first two, which can be performed independently from the 
GPFS software installation but must be completed before GPFS configuration. The 
cross-cluster SSL setup for the GPFS daemons is part of the GPFS configuration described 
in “Creating a single-node Blue Gene GPFS cluster on the service node” on page 22. The 
following steps are needed, separately for the SN, the FEN(s), and the IONs:

1. The SSH software needs to be installed.

2. The SSH daemon’s keys must be created to authenticate the host.

3. The root user keys must be created to authenticate the root user.

4. The SSH daemon needs to be started.

5. The SSH daemons’ public keys must be made known to all other cluster nodes to avoid 
interactive prompts when an ssh client connects to a remote sshd for the first time.

6. The authorization files must be configured to authorize the root user on one cluster node 
for ssh access to the root user of another cluster node (to avoid interactive password 
prompts).

Because the detailed process is slightly different for the SN/FEN(s) and Blue Gene ION(s), 
we discuss steps 1 to 4 separately, and then discuss steps 5 and 6.

SSH setup on the SN and FEN(s)
Repeat the following separately on the SN and each FEN:

1. SSH is installed by default when a SLES9 server is installed.

2. The SSH daemon’s key-pair is created automatically during installation.

3. To create a key-pair for the root user, run the ssh-keygen command. We explicitly set a 
comment field to indicate the key’s usage (“-C” option, change text as appropriate). No 
passphrase is allowed (“-N” option) because the key will be used non-interactively:

root@SN> ssh-keygen -t dsa -b 1024 -f ~/.ssh/id_dsa -N '' -C 
'root@bluegene-sn'

4. SSH is started automatically on SLES9.

SSH setup for the IONs
Because the IONs do not have local disks, the SSH setup for them is slightly different:

1. The SSH software is already installed in the $BGOS tree that is shipped with the Blue 
Gene system software. This directory is mounted by all IONs during ION bring-up:

export BGLOS=/bgl/BlueLight/ppcfloor/bglsys/bin/bglOS
rpm --root $BGLOS -qa | grep -i -E "ssh|ssl"
# openssh-3.8p1-48
# openssl-0.9.7d-24

Configuration information (like key-pairs) is specific for each customer installation, so all 
the SSH configuration for the IONs takes place in the $BGL_SITEDISTDIR directory on 
the SN, normally /bgl/dist/. This directory is also mounted by the IONs during ION 
bring-up. 
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2. We habitually create both RSA and DSA keys (“-t” option), although one key type would 
be sufficient. No passphrase is allowed to avoid interactive prompts (“-N” option). We 
provide a description of the keys with the “-C” option:

mkdir -p /bgl/dist/etc/ssh
chmod 755 /bgl /bgl/dist /bgl/dist/etc /bgl/dist/etc/ssh
cd /bgl/dist/etc/ssh
ssh-keygen -t rsa -b 1024 -f ./ssh_host_rsa_key -N '' -C 'bluegene-ion'
ssh-keygen -t dsa -b 1024 -f ./ssh_host_dsa_key -N '' -C 'bluegene-ion'
ls -al /bgl/dist/etc/ssh

3. The root user key-pair for the IONs also has to be created without a passphrase:

mkdir -p /bgl/dist/root/.ssh
chmod 700 /bgl/dist/root /bgl/dist/root/.ssh
ls -ld /bgl/dist/root /bgl/dist/root/.ssh
#drwx------   3 root root  72 2006-02-15 15:29 /bgl/dist/root
#drwx------   2 root root  48 2006-02-15 15:29 /bgl/dist/root/.ssh

ssh-keygen -t dsa -b 1024 -f /bgl/dist/root/.ssh/id_dsa -N '' -C 
'root@bluegene-ion'
ls -al /bgl/dist/root/.ssh

Note that we treat all IONs as identical and use a single key-pair for all IONs, and a single 
key-pair for all root users on these IONs. This should be OK and makes the setup much 
easier than generating different keys for the different IONs and users.

4. Startup of the SSH daemon is controlled by the S16sshd rc-script in the $BGL_DISTDIR 
directory, normally /bgl/BlueLight/ppcfloor/dist/. This file is always invoked at ION startup, 
but will only start SSH when any of the following two conditions is met:

– GPFS will be started (see below how this is configured).

– The /etc/sysconfig/sshd file is present locally on the ION (arbitrary contents).

If you set up GPFS correctly, this will automatically start up the SSH daemons and no 
further action is necessary. However, we prefer to verify that SSH works correctly before 
starting the GPFS configuration. So we use the second option to start up SSH before we 
proceed with GPFS. Within our site-specific rc-file /bgl/dist/etc/rc.d/rc3.d/S10fzj_sysconfig, 
we create the startup file as follows:

echo "# if an /etc/sysconfig/ssh file is present," > 
/etc/sysconfig/ssh
echo "# the driver's S16sshd starts SSHD even w/o GPFS..." >> 
/etc/sysconfig/ssh

The next Blue Gene block that will be booted will start SSH on the IONs of that block, through 
the /bgl/BlueLight/ppcfloor/dist/etc/rc.d/rc3.d/S16sshd script. Make sure that you use a 
sequence number below 16 for your site-specific script, to ensure that you create the file 
/etc/sysconfig/sshd before the S16sshd script checks for its presence.

SSH public key exchanges within the cluster
After the key-pairs for all cluster nodes and for the root users on all cluster nodes have been 
generated, these keys must be distributed to all cluster nodes: the SSH daemons’ public keys 
are collected in a known_hosts file, and the root user public keys are added to the root users’ 
authorized_keys files to authorize ssh connections without a password.

5. Making the SSH daemons’ public keys known

Whenever an ssh client connects to a remote sshd server, it verifies the remote server’s 
authenticity by using a copy of that SSH daemon’s public key that is stored in the client’s 
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list of known hosts. If no local copy of the SSH daemon’s public key exists, an interactive 
prompt asks the user if the public key should be added to the list of known hosts. GPFS 
will use ssh non-interactively, so this interactive prompt must be prevented for 
connections within the GPFS cluster. This can be achieved by manually adding the 
affected public keys to the known hosts file, on all nodes in the cluster, before starting up 
GPFS. The public keys of other cluster nodes can be stored in two places:

– The global /etc/ssh/ssh_known_hosts file

– The per-user $HOME/.ssh/known_hosts file

We prefer the system-wide file because it is easier to manage, and applies to all users. 
Create the file on the SN, and then copy it to the FEN(s) and to a location in /bgl/ where 
the IONs can access it. For the IONs we use only a single key-pair, but their IP names and 
addresses are different, of course. SSH allows some wildcarding (see man ssh) so we do 
not need to add all IONs individually. Our /etc/ssh/ssh_known_hosts file contains the 
following:

cat /etc/ssh/ssh_known_hosts

# Service Node (Blue Gene functional network IP, and admin LAN IP):
SN,SN.your-domain.org,111.333.555.111,SN-b,SN-b.your-domain.org,222.444.666.
220 ssh-rsa AAAABBBBCCCC.....KaA8E=
# Frontend Node (Blue Gene functional network IP, and user LAN IP):
FEN,FEN.your-domain.org,111.333.555.10,FEN-b,FEN-b.your-domain.org,222.444.6
66.221 ssh-rsa AAAABBBBCCCC.....1jJFc=
# IONs (short and long IP names, using SSH config file wildcards):
R??-M?-N?-?,R??-M?-N?-?.your-domain.org ssh-rsa AAAABBBBCCCC.....jDDOk=
# IONs (IP addresses, using SSH config file wildcards where possible):
222.444.666.33,... ssh-rsa AAAABBBBCCCC.....jDDOk= root@bluegene-ion
.....

After the file is completed on the SN, we make sure it is world-readable and copy it to the 
FEN(s). For the IONs, we copy the file both to the system-wide file and to the root user’s 
personal file. The Blue Gene V1R2 system software bring-up procedure honors the root 
user’s personal file, but not the system-wide file:

chmod 644 /etc/ssh/ssh_known_hosts

scp -p /etc/ssh/ssh_known_hosts root@FEN:/etc/ssh/ssh_known_hosts

cp -p /etc/ssh/ssh_known_hosts /bgl/dist/etc/ssh/ssh_known_hosts  
# this does NOT get pulled in on IONs
cp -p /etc/ssh/ssh_known_hosts /bgl/dist/root/.ssh/known_hosts

Notes:

We recommend to add the IP address, short IP name, and long IP names of the SN, 
FEN(s) and IONs to the known hosts file. This ensures that ssh will work without 
interactive prompts regardless of how the remote host is addressed. For the SN and 
FEN we also include their interfaces of the external network connections. This is not 
necessary for GPFS, but convenient for users who are using ssh for connections on 
those networks.

For the IONs’ IP addresses, make sure that you do not use wildcards that match a 
bigger pattern than the IP range that the IONs actually use (for example, the SN, FEN, 
or file server IP addresses that are in the same network). Such “duplicate public key 
matches” may lead to undesirable effects.
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# this DOES get pulled in on IONs

6. Setting up ssh authorization

The final step in the SSH setup is to authorize the root user to run ssh connections across 
all cluster nodes without a password. This is done by creating an authorized_keys file that 
contains the SN, FEN, and ION root users’ public keys that have been created in step 3 
above:

# add root@SN pubkey:
cat ~root/.ssh/id_dsa.pub >> ~root/.ssh/authorized_keys

# get root@FEN pubkey and add it:
scp root@FEN:.ssh/id_dsa.pub \

~root/.ssh/FEN-id_dsa.pub # this will still ask for a password ;-)
cat ~root/.ssh/FEN-id_dsa.pub >> ~root/.ssh/authorized_keys

# add root@IONs pubkey:
cat /bgl/dist/root/.ssh/id_dsa.pub >> ~root/.ssh/authorized_keys

# copy the file to the root user’s .ssh directory on the IONs:
# (we also have some administrators’ personal pubkeys in this file on the 
SN,
# hence the grep for the root@bluegene* users keys’ comment fields set 
above...)
grep -E "root@bluegene" ~root/.ssh/authorized_keys \
  >> /bgl/dist/root/.ssh/authorized_keys

# copy the file to the root user’s .ssh directory on the FEN:
scp /bgl/dist/root/.ssh/authorized_keys \

root@FEN:.ssh/authorized_keys # this will still ask for a password 
;-)

As for the known hosts file, we first created the authorization file on the SN. Then we 
copied it to a location in /bgl/ where the IONs can access it, and also to the FEN(s).

Testing the SSH connectivity
Now the SSH setup is complete and can be tested. Allocating a block (partition) in the Blue 
Gene racks will start up SSH on its IONs, and ssh connections between the SN, FEN(s) and 
these IONs can then be tested. For example, from the SN:

# local script to allocate a block to a user
bglallocate R000_N0123 someuser #  a 128-way block with 4 node cards and 4 
IONs

ssh 222.444.666.34 uptime # test IP addresses
ssh r00-m0-n0-4 uptime # test short IP names
ssh r00-m0-n0-4.your-domain.org uptime # test long IP names

After this verification step, we know that SSH works and can now install and configure GPFS.

GPFS installation and configuration
As described in the GPFS HOWTO for Blue Gene, the Blue Gene GPFS cluster consists of 
the SN, FEN(s), and IONs. It does not own any GPFS file systems, but accesses the remote 
GPFS cluster’s file systems. To set up this cluster we proceed as follows:
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� “GPFS software installation” on page 20.

� “Creating a single-node Blue Gene GPFS cluster on the service node” on page 22.

� “Establishing the GPFS multicluster access” on page 24.

� “Adding the FEN(s) to the Blue Gene GPFS cluster” on page 28.

� “Adding the IONs to the Blue Gene GPFS cluster” on page 29.

� “Customizing the GPFS startup process for the IONs” on page 32.

The general planning and installation steps to set up a GPFS cluster are described in GPFS 
2.3 Concepts, Planning and Installation Guide, GA22-7968-02.

GPFS software installation
For this study the Blue Gene system software was at the V1R2M1 level. The minimum 
prerequisite level for GPFS 2.3 on Blue Gene is V1R2M0, but we recommend to upgrade to 
the latest available Blue Gene software level before starting to install GPFS.

Obtaining the required GPFS software
There are three different sets of hardware/OS involved in this study, and correspondingly 
three different pieces of GPFS software:

1. The “OWNING” pSeries cluster consists of 41 frames of p690 servers, all running AIX 5L, 
maintenance level 5200-06, and GPFS 2.3 for AIX 5L. This cluster is at GPFS version 
2.3.0.9 (with base level for AIX 5L from CD, and PTF levels from the AIX 5L fix distribution 
center or from:

http://techsupport.services.ibm.com/server/gpfs/download/home.html)

We do not discuss this further because this cluster is already operating (this is standard 
GPFS for AIX 5L).

2. The Blue Gene service node (hostname SN) and front-end node (hostname FEN) are two 
POWER5-based OpenPower 720 servers running SLES9 SP3 for pSeries. They need 
GPFS 2.3 for SLES9 on pSeries. At the time of installation, patch levels 2.3.0.7 to 2.3.0.10 
were available, with base level for SLES from CD, and PTF levels from:

http://techsupport.services.ibm.com/server/gpfs/download/home.html

3. The Blue Gene I/O nodes (IONs) are PPC440-based Blue Gene processors and run an 
embedded Linux kernel. A GPFS 2.3 version for Blue Gene is available as PRPQ p91224. 
At the start of this study only PTF level 2.3.0.8 was available; later on updates including 
2.3.0.13 became available. For customers that have ordered the PRPQ, the software is 
available from the Blue Gene software download site (installable PTF levels, no need for a 
base level CD).

Note: The Blue Gene system software version V1R3 requires GPFS 3.1.

Tip: GPFS requires that you accept its license before installation. With AIX 5L this can 
be done via installp, but the Linux rpm command has no “license acceptance” option. 
Instead, the RPM files are shipped in a “locked” format. After copying the CD contents 
to disk you need to run the following to accept the GPFS license under Linux. This will 
unpack the individual base level RPM files:

./gpfs_install-2.3.0-0_sles9_ppc64 --dir . --text-only --silent
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Although it may be possible to have mixed PTF levels within a cluster, we decided to start 
with a homogeneous setup and use 2.3.0.8 for all participants in the Blue Gene cluster (SN, 
FEN, and IONs). Later in the process we upgraded all participants to 2.3.0.13.

Installing the GPFS software on the SN and FEN(s)
This is a standard GPFS for pSeries Linux installation. Before installing, consult the GPFS 
FAQ for the minimum Linux kernel level required for your level of GPFS. Verify which kernel 
level you are running (for example, by uname -r), and upgrade if you are downlevel.

You have to perform the following actions on the SN and each FEN in your Blue Gene 
system. For larger clusters, you may want to use a cluster management software such as 
CSM. Here we have only one SN and one FEN, and install the software manually.

1. Install the GPFS base level and PTF level RPMs:

cd /install/gpfs-2.3.0-0 ; rpm -ivh gpfs*.rpm
cd /install/gpfs-2.3.0-8 ; rpm -Uvh gpfs*.rpm
rpm -qa | grep gpfs # verify that the install worked...

2. Build the GPFS Portability Layer (GPL) as described in /usr/lpp/mmfs/src/README. Note 
that you need the Linux kernel sources installed at the level matching your running kernel, 
as well as the gcc compiler and some other prerequisite RPMs.

export SHARKCLONEROOT=/usr/lpp/mmfs/src

cd /usr/lpp/mmfs/src/config
cp site.mcr.proto site.mcr
vi site.mcr
diff site.mcr*|grep "^<"
#< #define GPFS_ARCH_PPC64
#< LINUX_DISTRIBUTION = SUSE_LINUX
#< #define LINUX_KERNEL_VERSION 2060507
#< KERNEL_HEADER_DIR = /lib/modules/`uname -r`/source/include

cd /usr/lpp/mmfs/src
make World         2>&1 | tee /tmp/make-world.txt
make InstallImages 2>&1 | tee /tmp/make-installimages.txt

cd /usr/lpp/mmfs/bin
ls -al mmfslinux mmfs26 lxtrace tracedev dumpconv
#-r-x------   1 root root   44655 2006-02-15 12:20 tracedev
#-r-x------   1 root root   15667 2006-02-15 12:20 dumpconv
#-r-x------   1 root root   42678 2006-02-15 12:20 lxtrace
#-r-x------   1 root root 1649984 2006-02-15 12:20 mmfs26
#-r-x------   1 root root  294632 2006-02-15 12:20 mmfslinux

Installing the GPFS software for the IONs
The Blue Gene nodes are diskless. The IONs are booted over the network and then mount 
the $BGLOS directory from the SN. The data in that tree originally comes with the Blue Gene 
system software. The (optional) GPFS software can be installed into that tree by changing the 
RPM base directory with the --root option:

export BGLOS=/bgl/BlueLight/ppcfloor/bglsys/bin/bglOS

rpm --root $BGLOS -qa | grep -E ’ssl|ssh’ # see which RPMs are installed, 
need SSH...
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cd /install/gpfs-bgl-prpq-2.3.0-8
rpm --root $BGLOS --nodeps -iv \
gpfs.base-2.3.0-8.ppc.rpm \
gpfs.docs-2.3.0-8.noarch.rpm \
gpfs.gplbin-2.3.0-8.ppc.rpm \
gpfs.msg.en_US-2.3.0-8.noarch.rpm

rpm --root $BGLOS -qa | grep gpfs # verify that the install worked...

Note that a gpfs.gplbin file set is installed, which does not exist for other GPFS Linux 
versions. This is a precompiled version of the GPFS Portability Layer (GPL) executables, so 
you do not need to build the portability layer manually as above for the SLES9 install. You can 
check that the GPL executables are present by looking into the GPFS binary directory in 
$BGLOS:

cd $BGLOS/usr/lpp/mmfs/bin
ll mmfslinux mmfs26 lxtrace tracedev dumpconv
#-r-x------  1 root root  14365 2005-11-17 20:49 dumpconv
#-r-x------  1 root root  34930 2005-11-17 20:49 lxtrace
#-r-x------  1 root root 190758 2005-11-17 20:49 mmfslinux
#-r-x------  1 root root 16????? 2005-11-17 20:49 mmfs26
#-r-x------  1 root root  16093 2005-11-17 20:49 tracedev

Alternatively you can verify this by checking the contents of the gpfs.gplbin RPM file with the 
rpm -qlp gpfs.gplbin-2.3.0-8.ppc.rpm command.

Before starting to configure GPFS, it is worthwhile to add the GPFS binary directory to root’s 
$PATH on the SN and FEN(s):

echo ’export PATH=/usr/lpp/mmfs/bin:$PATH’ >> ~root/.profile
. ~root/.profile

This enables root to run the GPFS commands without specifying their full pathnames.

Creating a single-node Blue Gene GPFS cluster on the service node
First we create a GPFS cluster on the SN using mmcrcluster. The SN will be the primary 
cluster configuration server and no backup configuration server will be configured (at a later 
time we may add the FEN as a secondary). We verify the cluster creation with mmlscluster 
and mmlsconfig:

echo ’SN-b:manager-quorum’ > /tmp/gpfs_nodefile.sn

mmcrcluster \
  -n /tmp/gpfs_nodefile.sn \

Attention: Updates to the Blue Gene system software (like an update from V1R2M0 to 
V1R2M1) will replace the $BGLOS directory. So after each such update you need to 
reinstall the GPFS software into $BGLOS.

Note: Normally it is not advisable to have only a single quorum node and cluster 
configuration server because this would introduce a single point of failure. However, in the 
Blue Gene environment the Service Node needs to be available for the Blue Gene IONs to 
be usable in the first place. So a GPFS cluster with the SN as quorum node and IONs 
dynamically joining and leaving the cluster as non-quorum nodes does not create an 
additional availability risk.
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  -p SN-b.your-domain.org \
  -r /usr/bin/ssh \
  -R /usr/bin/scp \
  -C CLIENT.your-domain.org \
  -U CLIENT.your-domain.org \
  -A
#Wed Feb 15 16:50:05 CET 2006: mmcrcluster: Processing node 
SN-b.your-domain.org
#mmcrcluster: Command successfully completed

mmlscluster
#
#GPFS cluster information
#========================
#  GPFS cluster name:         CLIENT.your-domain.org
#  GPFS cluster id:           987654321987654321
#  GPFS UID domain:           CLIENT.your-domain.org
#  Remote shell command:      /usr/bin/ssh
#  Remote file copy command:  /usr/bin/scp
#
#GPFS cluster configuration servers:
#-----------------------------------
#  Primary server:    SN-b.your-domain.org
#  Secondary server:  (none)
#
# Node number  Node name    IP address       Full node name        Remarks
#------------------------------------------------------------------------------
#       1      SN-b       222.444.666.220    SN-b.your-domain.org   quorum node

mmlsconfig
#Configuration data for cluster CLIENT.your-domain.org:
#------------------------------------------------------
#clusterName CLIENT.your-domain.org
#clusterId 987654321987654321
#clusterType lc
#multinode yes
#autoload yes
#useDiskLease yes
#uidDomain CLIENT.your-domain.org
#maxFeatureLevelAllowed 813
#
#File systems in cluster CLIENT.your-domain.org:
#-----------------------------------------------
#(none)

Two important settings that typically need to be adjusted are the maximum blocksize and the 
size of the GPFS pagepool. Beware that the pagepool must not exceed 50% of main memory, 
which on the IONs normally is 512 MB, so we are using 128 MB as a conservative starting 
point. The settings can be changed with the mmchconfig command, and when we then run 
mmlsconfig again it will show the changed values:

mmchconfig maxblocksize=1024K
#mmchconfig: Command successfully completed
mmchconfig pagepool=128M
#mmchconfig: Command successfully completed
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mmlsconfig
#Configuration data for cluster CLIENT.your-domain.org:
#------------------------------------------------------
#...
#maxblocksize 1024K
#pagepool 128M
#...

To verify that the newly created GPFS cluster works correctly, we start and stop it:

mmstartup -a
#Wed Feb 15 16:57:08 CET 2006: mmstartup: Starting GPFS ...

mmshutdown -a
#Wed Feb 15 17:11:18 CET 2006: mmshutdown: Starting force unmount of GPFS file 
systems
#Wed Feb 15 17:11:23 CET 2006: mmshutdown: Shutting down GPFS daemons
#SN-b.your-domain.org:  Shutting down!
#SN-b.your-domain.org:  'shutdown' command about to kill process 2319
#SN-b.your-domain.org:  Unloading modules from /usr/lpp/mmfs/bin
#SN-b.your-domain.org:  Unloading module mmfs
#SN-b.your-domain.org:  Unloading module mmfslinux
#SN-b.your-domain.org:  Unloading module tracedev
#Wed Feb 15 17:11:33 CET 2006: mmshutdown: Finished

Establishing the GPFS multicluster access
With this minimal Blue Gene GPFS cluster, we can now establish the connection to the 
owning cluster, and access its file systems. We break this down into six steps:

1. “SSL setup for the local CLIENT cluster” on page 24.

2. “SSL setup for the remote OWNING cluster” on page 25.

3. “Key exchange between the two GPFS clusters OWNING and CLIENT” on page 26.

4. “On the remote OWNING cluster, allow access by the CLIENT cluster” on page 26.

5. “On the local CLIENT cluster, access the remote GPFS file systems” on page 27.

6. “On the local CLIENT cluster, mount the remote GPFS file systems” on page 28.

When the multicluster setup works, we can then add the FEN(s) and IONs to the cluster. 
GPFS will automatically manage the replication of the multicluster setup to the new nodes.

SSL setup for the local CLIENT cluster
Using the mmauth command, we generate an SSL key-pair for the local cluster that can then 
be used in cross-cluster authentication. That key will be stored in the /var/mmfs/ssl/ directory. 
After the key has been created, the cluster configuration can be updated to use SSL for 
authentication, using the mmchconfig cipherList command. Note that the latter will fail if no 
SSL key-pair has been created yet.

ll /var/mmfs/ssl/id_rsa.pub # none

# test - should fail...

Note: Values like pagepool can be set either globally as above, or for a subset of nodes. 
For example, this allows different settings on the IONs and the external System p™ 
servers.
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mmchconfig cipherList=AUTHONLY
#mmchconfig: You must first generate an authentication key file. Run: mmauth 
genkey

mmauth genkey # needs to be done at least once before cipherList is set
#Verifying GPFS is stopped on all nodes ...
#Generating RSA private key, 512 bit long modulus
#......++++++++++++
#...++++++++++++
#e is 54321 (0x10101)
#mmauth: Command successfully completed

ll /var/mmfs/ssl/
#total 16
#drwx------  3 root root 216 2006-02-15 17:43 .
#drwxr-xr-x  7 root root 168 2006-02-15 11:14 ..
#lrwxrwxrwx  1 root root   7 2006-02-15 17:43 id_rsa -> id_rsa1
#-rw-------  1 root root 493 2006-02-15 17:43 id_rsa1
#-rw-r--r--  1 root root 457 2006-02-15 17:43 id_rsa.cert
#-rw-r--r--  1 root root 182 2006-02-15 17:43 id_rsa.pub
#-rw-r--r--  1 root root 190 2006-02-15 17:43 openssl.conf
#drwx------  2 root root  48 2006-02-15 16:09 stage

mmauth show
#Cluster name:        CLIENT.your-domain.org (this cluster)
#Cipher list:         (none specified)
#SHA digest:          abcefd0123456789abcdef0123456789
#File system access:  (all rw)

mmchconfig cipherList=AUTHONLY
#Verifying GPFS is stopped on all nodes ...
#mmchconfig: Command successfully completed

mmauth show
#Cluster name:        CLIENT.your-domain.org (this cluster)
#Cipher list:         AUTHONLY
#SHA digest:          abcefd0123456789abcdef0123456789
#File system access:  (all rw)

mmlsconfig|grep cipher
#cipherList AUTHONLY

SSL setup for the remote OWNING cluster
The remote cluster that owns the file systems is already set up for GPFS multicluster. We just 
verify that everything is in place:

ssh nsd01 # any node in the remote cluster

ls /var/mmfs/ssl
authorized_keys                 known_cluster.ibmsc.csc.fi
id_rsa                          known_cluster.j39d1m

Note: With GPFS 3.1, the cipherList setting can alternatively be changed through a new 
mmauth subcommand as well as through the GPFS 2.3 mmchconfig cipherList 
subcommand.
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id_rsa.cert                     known_cluster.psi.rzg.mpg.de
id_rsa.pub                      known_cluster.spmsw102
id_rsa2                         known_cluster.zam452b
known_cluster.IDRPROD.idris.fr  openssl.conf
known_cluster.IDRTEST.idris.fr  stage

mmlsconfig|grep cipher
#cipherList AUTHONLY

An SSL key-pair (id_rsa and id_rsa.pub) for this cluster is already created and activated. The 
authorized_keys file contains all the public keys of other clusters that are allowed to access 
file systems of this cluster, and the known_cluster.clustername files are the public keys of 
other clusters whose file systems are accessed from this cluster. These files are managed by 
the GPFS commands and should not be edited manually.

Key exchange between the two GPFS clusters OWNING and CLIENT
Now that both clusters have their SSL key-pairs generated and activated, their public keys 
need to be exchanged. This is a manual file copy process, for example:

scp root@SN:/var/mmfs/ssl/id_rsa.pub root@NSD1:/tmp/gpfs-CLIENT.pub
scp root@NSD1:/var/mmfs/ssl/id_rsa.pub root@SN:/tmp/gpfs-OWNING.pub

You can use one node in each cluster for this operation. There is no need to copy these files 
to all nodes in a GPFS cluster. The files are copied into /tmp to emphasize that they are used 
only once, as input to the following GPFS commands.

On the remote OWNING cluster, allow access by the CLIENT cluster
On the OWNING cluster that owns the file systems, we first establish the authentication of the 
CLIENT cluster by adding its public key to the data in /var/mmfs/ssl/ using the mmauth add 
command. Run the following on the same node to which you copied the public key:

mmauth add CLIENT.your-domain.org -k /tmp/gpfs-CLIENT.pub
#mmauth: Command successfully completed
#mmauth: 6027-1371 Propagating the changes to all affected nodes.
#This is an asynchronous process.

mmauth show CLIENT.your-domain.org
#Cluster name:        CLIENT.your-domain.org
#Cipher list:         AUTHONLY
#SHA digest:          abcefd0123456789abcdef0123456789
#File system access:  (none authorized)

As indicated by the 6027-1371 message, GPFS will manage the distribution of this 
information to all nodes in the cluster: The whole /var/mmfs/ssl/ directory is synchronized 
across all nodes by the GPFS software. The file in /tmp is now no longer needed.

At the end of the mmauth list command output, it can be seen that this step did not yet 
establish any authorization to access file systems owned by OWNING. To do this we run the 
mmauth grant command for each GPFS file system that we want to make available:

for SHAREDFS in home1 home2 home3 home4 home5 home6 home7 work
do
  echo "granting access for $SHAREDFS..."
  mmauth grant CLIENT.your-domain.org -f $SHAREDFS -a rw -r no
done
#
mmauth show CLIENT.your-domain.org
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#Cluster name:        CLIENT.your-domain.org
#Cipher list:         AUTHONLY
#SHA digest:          abcefd0123456789abcdef0123456789
#File system access: home1     (rw, root allowed)
#                     home2     (rw, root allowed)
#...
#                     work      (rw, root allowed)

Now the CLIENT cluster is granted access to these GPFS file systems owned by OWNING.

On the local CLIENT cluster, access the remote GPFS file systems
Analogous to the steps above, we first establish the authentication of the OWNING cluster by 
adding its public key to the data in /var/mmfs/ssl/. This time (on the CLIENT cluster), we need 
to use the mmremotecluster add command. Run the following on the same node where you 
copied the public key into /tmp.

In addition to the remote cluster’s SSL public key, we also need a list of contact nodes that this 
cluster will use to connect to the remote cluster. By convention we use the quorum nodes in 
the remote cluster. Although this is not a requirement, it is a sensible choice because these 
nodes are more likely to be available than the non-quorum nodes.

ls /var/mmfs/ssl
# .   authorized_keys  id_rsa1      id_rsa.pub    stage
# ..  id_rsa           id_rsa.cert  openssl.conf

ssh nsd01 'mmlscluster | grep -E "server:|quorum"'
#  Primary server:    nsd01f
#  Secondary server:  nsd03f
#      37      nsd01f      111.222.333.202    nsd01f                     quorum 
node
#      38      nsd02f      111.222.333.203    nsd02f                     quorum 
node
#      41      nsd03f      111.222.333.205    nsd03f                     quorum 
node
#      42      nsd04f      111.222.333.206    nsd04f                     quorum 
node

mmremotecluster show all
#mmremotecluster: There are no remote cluster definitions.

mmremotecluster add OWNING.your-domain.org \
  -k /tmp/gpfs-OWNING.pub  -n nsd01f,nsd02f,nsd03f,nsd04f
# quietly returns with no stdout...

mmremotecluster show all
#Cluster name:    OWNING.your-domain.org
#Contact nodes:   nsd01f,nsd02f,nsd03f,nsd04f
#SHA digest:      123456789abcefd0123456789abcdef0
#File systems:    (none defined)

ls /var/mmfs/ssl
#.                id_rsa       id_rsa.pub                        stage
#..               id_rsa1      known_cluster.OWNING.your-domain.org
#authorized_keys  id_rsa.cert  openssl.conf
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Now the known_cluster.clustername file for the OWNING cluster has been added to the 
/var/mmfs/ssl/ directory, but no remote file systems are defined yet. To complete the setup, 
we need to add the remote file systems using mmremotefs add:

mmremotefs show all
#mmremotefs: There are no remote file systems.

for SHAREDFS in home1 home2 home3 home4 home5 home6 home7 work
do
  echo "adding $SHAREDFS..."
  mmremotefs add $SHAREDFS -f $SHAREDFS -C OWNING.your-domain.org -T /$SHAREDFS 
-A no
done

mmremotefs show -C OWNING.your-domain.org
#Local Name  Remote Name  Cluster name           Mount Point Mount Options    
Automount
#home1       home1        OWNING.your-domain.org     /home1          rw               
no
#home2       home2        OWNING.your-domain.org     /home2          rw               
no
...
#work        work         OWNING.your-domain.org     /work           rw               
no

Note that we did not enable automatic mounting for the remote file systems (option “-A no”) 
because we first want to test the setup manually. This can be changed later.

On the local CLIENT cluster, mount the remote GPFS file systems
When we now start GPFS on the SN, all the added remote file systems should be 
automatically added to /etc/fstab, but will not yet be mounted:

mmstartup

grep gpfs /etc/fstab
#/dev/home1  /home1  gpfs  
rw,dev=OWNING.your-domain.org:home1,ldev=home1,noauto 0 0
#/dev/home2  /home2  gpfs  
rw,dev=OWNING.your-domain.org:home2,ldev=home2,noauto 0 0
...
#/dev/work  /work  gpfs  
rw,dev=OWNING.your-domain.org:work,ldev=work,noauto 0 0

These entries are correct, so we can mount the file systems, for example mount /home1.

Adding the FEN(s) to the Blue Gene GPFS cluster
The FEN(s) can be added by the mmaddnode command. This will also synchronize the 
multicluster setup, in particular the /var/mmfs/ssl/ directory, to the added node. We perform all 
of these actions on the SN.

ping FEN-b # to check that the node is reachable...
ssh FEN-b "rpm -qa|grep gpfs.base" # to check that ssh to the node works...

mmaddnode FEN-b:client-nonquorum
#Wed Feb 15 18:15:26 CET 2006: mmaddnode: Processing node FEN-b.your-domain.org
#mmaddnode: Command successfully completed
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#mmaddnode: Propagating the changes to all affected nodes.
#This is an asynchronous process.

mmlsnode -a
#GPFS nodeset    Node list
#-------------   -------------------------------------------------------
#   CLIENT      SN-b FEN-b

mmlscluster | grep FEN-b
#       2      FEN-b        222.444.666.221    FEN-b.your-domain.org

Now GPFS can be started on the FEN, and the file systems can be mounted on the FEN. 
Because the FEN is a “normal” server running SLES9, this works exactly like on the SN.

Adding the IONs to the Blue Gene GPFS cluster
The Blue Gene IONs are different from the SN and FEN(s) in that they are diskless and all 
their configuration information and startup scripts reside in the /bgl/ directory on the SN. The 
GPFS-specific information that is normally stored in /var/ is placed in per-ION directories 
/bgl/gpfsvar/<ion-ip-address>/var/, which are mounted over the ION’s /var/ subdirectories. 
The /bgl/gpfsvar/ directory needs to be created before adding IONs. The per-ION 
subdirectories are created by the IONs’ GPFS startup scripts:

mkdir /bgl/gpfsvar
chown root.root /bgl/gpfsvar
chmod 750 /bgl/gpfsvar

To add a Blue Gene ION, it must be up and running. So a block that contains it needs to be 
booted. In addition, the SSH setup must be completed as described above. We test the 
procedure by adding a single ION, verifying its operation, and deleting it again. Afterwards we 
add all IONs to the GPFS cluster.

Adding a single ION
After booting a block that contains the ION we want to add, we verify network connectivity 
through ping, verify that it can be accessed by ssh, and then add the node using mmaddnode:

# local command to boot a block for a user:
bglallocate R001_NF ibm010

ping -c 5 r00-m1-nf-4 # check that the node is 
reachable
ssh r00-m1-nf-4 "rpm -qa|grep gpfs.base" # check that ssh to the node 
works

mmlsnode -a
#GPFS nodeset    Node list
#-------------   -------------------------------------------------------
#   CLIENT      SN-b FEN-b

mmaddnode "r00-m1-nf-4:client-nonquorum"
#Mon Feb 20 10:51:00 CET 2006: mmaddnode: Processing node 
r00-m1-nf-4.your-domain.org
#mmaddnode: Command successfully completed
#mmaddnode: Propagating the changes to all affected nodes.
#This is an asynchronous process.
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mmlsnode -a
#GPFS nodeset    Node list
#-------------   -------------------------------------------------------
#   CLIENT      SN-b FEN-b r00-m1-nf-4

mmstartup -w r00-m1-nf-4
#Mon Feb 20 12:27:32 CET 2006: mmstartup: Starting GPFS ...

We can also log in to the ION and interactively check its state:

ssh r00-m1-nf-4
#BusyBox v1.00-rc2 (2006.01.09-19:48+0000) Built-in shell (ash)
#Enter 'help' for a list of built-in commands.

$ ps -ef|grep gpfs
#root      1017     1  0 11:27 ?        00:00:00 [gpfsSwapdKproc]
#root      1161  1159  0 11:28 ttyp1    00:00:00 grep gpfs
$ ps -ef|grep mmfs
#root       950     1  0 11:27 ?        00:00:00 /bin/ksh 
/usr/lpp/mmfs/bin/runmmfs
#root      1072   950  0 11:27 ?        00:00:00 /usr/lpp/mmfs/bin//mmfsd
#root      1163  1159  0 11:28 ttyp1    00:00:00 grep mmfs

$ echo all GPFS commands are in /usr/lpp/mmfs/bin as usual...
$ cd /usr/lpp/mmfs/bin
$ ./mmlscluster
$ ./mmlsnode -a
$ ./mmauth show
$ ./mmremotecluster show

$ cat /etc/fstab
#none /proc proc    defaults        0 0
#/dev/home1 /home1 gpfs 

rw,dev=OWNING.your-domain.org:bglhome,ldev=bglhome,noauto 0 0
...
$ mount /home1

$ cd /var/mmfs ; ls
# . .. etc gen mmbackup ssl tmp

$ ls -al ssl # check if the multicluster setup has been replicated to the new 
node:
#total 9

Note: When we first ran mmaddnode to add an ION, we received the following error:

mmaddnode "r00-m1-nf-4:client-nonquorum"
#mmaddnode: Unexpected output from the 'host -t a r00-m1-nf-4' command:
#Host r00-m1-nf-4 not found: 3(NXDOMAIN)
#mmaddnode: Incorrect node name r00-m1-nf-4 specified for command.
#mmaddnode: mmaddnode quitting.  None of the specified nodes are valid.

This is caused by the fact that mmaddnode uses the Linux host command to resolve the 
IP name of the node to be added, and the Linux host command did not check the 
/etc/hosts file but did a DNS request instead. After adding all IONs to DNS, mmaddnode 
worked without problems.
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#drwx------  3 root root 1024 Feb 20 09:51 .
#drwxr-xr-x  7 root root 1024 Feb 20 09:51 ..
#-rw-r--r--  1 root root  181 Feb 20 09:51 authorized_keys
#lrwxr-xr-x  1 root root    7 Feb 20 09:51 id_rsa -> id_rsa1
#-rw-r--r--  1 root root  457 Feb 20 09:51 id_rsa.cert
#-rw-r--r--  1 root root  182 Feb 20 09:51 id_rsa.pub
#-rw-------  1 root root  493 Feb 15 16:43 id_rsa1
#-rw-r--r--  1 root root  181 Feb 20 09:51 known_cluster.OWNING.your-domain.org
#-rw-r--r--  1 root root  190 Feb 20 09:51 openssl.conf
#drwx------  2 root root 1024 Feb 20 09:51 stage

$ cd /var/adm/ras ; ls
#mmfs.log.2006.02.20.11.27.32.R00-M1-NF-4  mmfs.log.latest

$ /usr/lpp/mmfs/bin/mmshutdown
#Mon Feb 20 11:44:39 UTC 2006: mmshutdown: Starting force unmount of GPFS file 
systems
#Mon Feb 20 11:44:44 UTC 2006: mmshutdown: Shutting down GPFS daemons
#Shutting down!
#'shutdown' command about to kill process 1072
#Unloading modules from /usr/lpp/mmfs/bin
#Unloading module mmfs
#Unloading module mmfslinux
#Unloading module tracedev
#Mon Feb 20 11:44:48 UTC 2006: mmshutdown: Finished
#
$ exit

So everything looks OK on the ION.

Deleting a single ION
Before adding all IONs, we delete the ION that was added in the previous section to check if 
this works. One important difference to other GPFS nodes is the fact that the diskless IONs 
store their local /var/ data in a special /bgl/gpfsvar/<ipaddress-of-ion>/var/ directory that is 
NFS-mounted from the service node. This directory needs to be carefully checked when 
nodes are added and deleted, to ensure that no stale configuration information is left there 
which could confuse the bring-up scripts on the ION. On the SN, we delete the ION we just 
added and then check and delete the corresponding /bgl/gpfsvar/<ipaddress-of-ion>/ 
directory:

# local script that kills jobs on a block and frees it
bgldeallocate R001_NF

mmlsnode -a
#GPFS nodeset    Node list
#-------------   -------------------------------------------------------
# CLIENT         SN-b FEN-b r00-m1-nf-4

mmdelnode r00-m1-nf-4
#Verifying GPFS is stopped on all affected nodes ...
#mmdelnode: Command successfully completed
#mmdelnode: Propagating the changes to all affected nodes.
#This is an asynchronous process.

mmlsnode -a
#GPFS nodeset    Node list
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#-------------   -------------------------------------------------------
# CLIENT         SN-b FEN-b

grep -i r00-m1-nf-4 /etc/hosts
#222.444.666.96    R00-M1-NF-4.your-domain.org  R00-M1-NF-4

find /bgl/gpfsvar/222.444.666.96/ # print this ION’s /var tree’s contents
rm -rf /bgl/gpfsvar/222.444.666.96/ # delete this ION’s /var tree

Now all state information for the ION is deleted and it can be safely re-added.

Adding all IONs to the GPFS cluster
After having tested the procedure with a single ION, we can now add all the IONs to the 
GPFS cluster. To do this we create a file with the hostnames of all IONs, add these to DNS, 
boot a block that spans the whole Blue Gene system, and then add the IONs in a loop:

# local script that allocates a block to a user:
bglallocate ALL ibm010

cat /tmp/gpfs.BGL-ion | while read ION
do

echo "adding $ION..."
mmaddnode "$ION:client-nonquorum"

done

mmlsnode -a

It is also possible to pass a GPFS NodeFile to mmaddnode, using the -n option. This would 
result in the addition of all the IONs in one step. We prefer the node-by-node approach so we 
can more easily spot problems that may occur in the process. However, this has the 
disadvantage that it takes a longer time to complete, as the configuration data gets replicated 
to all nodes at each loop step.

To mount the GPFS file systems, we use a mount script in $BGL_SITEDSTISTDIR named 
/bgl/dist/etc/rc.d/rc3.d/S41gpfs_mount.

Customizing the GPFS startup process for the IONs
Caused by the fact that the IONs are diskless, their startup process differs from normal Linux 
installations. Starting up SSH and GPFS on the IONs is triggered by files in /etc/sysconfig/ 
that the administrator needs to create. Our rc-file creates the GPFS file as follows:

cat /bgl/dist/etc/rc.d/rc3.d/S10fzj_sysconfig
#!/bin/sh
. /proc/personality.sh
. /etc/rc.status

...

# Trigger startup of GPFS:
echo "# if GPFS_STARTUP=1 in this file," > /etc/sysconfig/gpfs
echo "# the driver's S40gpfs will start  GPFS." >> /etc/sysconfig/gpfs
echo "# (SSHD will also be started via S16sshd)" >> /etc/sysconfig/gpfs
echo "GPFS_STARTUP=1"                            >> /etc/sysconfig/gpfs
echo "#GPFS_VAR_DIR=/bgl/gpfsvar"                >> /etc/sysconfig/gpfs
echo "#GPFS_CONFIG_SERVER=\"$BGL_SNIP\""         >> /etc/sysconfig/gpfs
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This creates the /etc/sysconfig/gpfs file, which gets sourced by the GPFS startup script, and 
since GPFS_STARTUP is set to true, that script will start GPFS.

Making the startup process more scalable
The GPFS startup script S40gpfs shipped with the Blue Gene system software includes a 
file-based check to verify that GPFS started correctly: an mmfsup.scr script is created, which 
will be called by GPFS during startup. This script touches a file, and after mmautoload the 
GPFS startup script checks whether this file exists or not:

# Create mmfsup script that will run when GPFS is ready
cat <<-EOF > /var/mmfs/etc/mmfsup.scr
#!/bin/sh
touch $upfile
EOF
chmod +x /var/mmfs/etc/mmfsup.scr

# Start GFPS and wait for it to come up
rm -f $upfile
/usr/lpp/mmfs/bin/mmautoload

We had some scalability problems with this approach: small partitions came up, but for larger 
partitions the rc-script occasionally reported a failure on a few of the IONs. However, GPFS 
was running OK on the “failed” nodes. In some instances we observed NFS problems, which 
in our environment affected two places:

� The $upfile that is touched is created in /tmp/. We had replaced /tmp/ with an 
NFS-mounted, per ION directory and saw “NFS stale filehandle” errors on this directory.

� The mmfsup.scr script is created in the ION’s /var/mmfs/ directory. This is not a local 
directory, but is NFS-mounted from the SN’s /bgl/gpfsvar/bgl-ip-address/ directory.

Reverting to a local /tmp/ directory reduced the frequency of the problem but didn’t 
completely eliminate it. Eventually we replaced the “touch-file” approach by a call to 
mmgetstate to monitor whether GPFS came up or not:

#MH#    # commented out this check (turned out unreliable), we use mmgetstate
#MH#    #
#MH#    retries=300
#MH#    until test -e $upfile
#MH#    do    sleep 2
#MH#          let retries=$retries-1
#MH#          if    [ $retries -eq 0 ]
#MH#          then  ras_advisory "$0: GPFS did not come up on I/O node $HOSTID"
#MH#                exit 1
#MH#          fi
#MH#    done
#MH#    rm -f $upfile
#MH#
#MH#    # BEGIN of mmgetstate check
        ACTIVE=0
        retries=10
        until test $ACTIVE -eq 1
        do    sleep 2

/usr/lpp/mmfs/bin/mmgetstate \
|tail -1|/usr/bin/grep -vE "active|arbitrating"

              ACTIVE=$?
              let retries=$retries-1
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              if    [ $retries -eq 0 ]
              then  ras_advisory "$0: GPFS did not come up on I/O node $HOSTID"
                    exit 1
              fi
        done

/usr/lpp/mmfs/bin/mmgetstate
#MH#    # END of mmgetstate check

Using mmgetstate has proven to be reliable even when bringing up hundreds of IONs at once. 
The “arbitrating” state is typically observed when quorum is lost, for example when our single 
quorum node is “down”:

$ ./mmgetstate -a
Node number  Node name       GPFS state
-----------------------------------------
       1      SN-b           down
       2      FEN-b            down
      25      R00-M1-N4-4      arbitrating
      26      R00-M1-N5-4      arbitrating

Tools for performance testing
After the GPFS setup is complete and the file system access is functional, it is a good idea to 
verify the performance of the solution. We split this into three steps:

1. Raw TCP/IP performance of the Ethernet connections.

2. GPFS performance for I/O operations originating on the IONs (testing only; end users do 
not have access to the IONs).

3. GPFS performance for end-user I/O, which originates on the compute nodes (CNs).

Obviously, the achievable bandwidth depends on the available networking and disk storage 
hardware. The main goal here is to verify that our configuration works as expected, and to 
identify potential bottlenecks relative to the baseline set by the available hardware. 

TCP/IP performance tests
There are many tools to test TCP/IP performance. Two that we recommend are nuttcp and 
Iperf (see references). The following tests have been performed with the stable distribution 
of nuttcp, v5.1.3:

Note: You might also want to comment out the above creation of the mmfsup.scr callback 
to avoid the unnecessary NFS load caused by the creation of the callback script.

Tip: To be able to patch the system-wide startup script, we copied it from $BGL_DISTDIR 
to $BGL_SITEDISTDIR, modified it, linked it into the startup sequence as S39gpfs before 
the system file starts up (S40gpfs), and near the end of our modified script we removed the 
/etc/sysconfig/gpfs file that triggers GPFS startup, to prevent the unmodified S40gpfs 
start-script from doing anything when it starts up later in the process.

Note: All performance measurements presented here were done during production 
operation, not in a dedicated benchmarking environment. So performance numbers are 
affected by other loads on the two clusters and the quoted performance numbers are for 
illustration only.
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Building nuttcp
Download the tool and build it, for pSeries-Linux on the SN and for AIX 5L on a node of the 
owning GPFS cluster. On the SN, put the executable into a directory under /bgl/ that is also 
accessible by the IONs and FEN(s). We used a /bgl/local/sbin/ directory for this purpose:

# build nuttcp on the SN...

mkdir ~/nuttcp
cd ~/nuttcp
for FILE in Makefile README examples.txt nuttcp.c nuttcp.cat nuttcp.html 
do

wget ftp://ftp.lcp.nrl.navy.mil/pub/nuttcp/stable/$FILE
done
make #  gcc -O3 -I. -Imissing -o nuttcp-v5.1.3 nuttcp-v5.1.3.c
cp nuttcp-v5.1.3 /bgl/local/sbin/nuttcp

Repeat this on the AIX 5L side, and put the executable, for example, into 
/usr/local/sbin/nuttcp.

Starting the nuttcp servers
There are two ways to start the server side of nuttcp: explicit invocation with nuttcp -S, or 
through inetd/xinetd. A sample xinetd config file can be found at the above site under 
../stable/xinetd.d/nuttcp, but here we just use the explicit startup. 

To test multiple streams, we start as many instances of nuttcp -S as we have Ethernet links 
on a node, using different port numbers. The “-P” option specifies the port used for data 
transfer, the “-p” option sets the port for control traffic.

nobody@nsd01: /usr/local/sbin/nuttcp -S -P5000 -p5001
nobody@nsd01: /usr/local/sbin/nuttcp -S -P5002 -p5003
nobody@nsd01: /usr/local/sbin/nuttcp -S -P5004 -p5005
nobody@nsd01: /usr/local/sbin/nuttcp -S -P5006 -p5007

On the IONs, we use an rc-file to start nuttcp on each ION in the blocks we want to use for 
testing. Note the case statement that evaluates the block name—this is useful especially for 
testing purposes on a system that is otherwise running a production workload:

cat /bgl/dist/etc/rc.d/rc3.d/S15nuttcp
#!/bin/sh
. /proc/personality.sh
. /etc/rc.status
case "$BGL_BLOCKID" in
# *)
# Disabled)
  R000_NCDEF*)
        echo "Starting nuttcp -S"
        /bgl/local/sbin/nuttcp -S -P5000 -p5001
        ;;
esac

After booting, for example, the block R000_NCDEF_FAT, a nuttcp server is running on each 
of its IONs. Blocks that do not start with R000_NCDEF are unaffected.

Note: Do not forget to stop the nuttcp servers when they are no longer needed, by killing 
the nuttcp -S process and/or disabling their startup on the IONs as shown in the above 
script.
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Performance measurements with nuttcp
On the client side, we normally run nuttcp -w1m destination-ip, which transfers data in 
blocks of 1 MB (our GPFS file system size) to the nuttcp server that runs on the server 
denoted by destination-ip. To measure multiple streams, we run multiple instances of the 
command in parallel. By default, the client transmits the data (“-t” option). It can also be called 
in receive mode, in which case it asks the server side to send data (“-r” option). A useful 
option for documenting multiple runs is “-I label” (capital i), which prints the label text at the 
beginning of the output line that shows the performance data. Our test script to run eight 
transmit streams in parallel is shown here:

root@nsd01::/tmp> cat nuttcp-t-8stream
H=`hostname`
./nuttcp -t -w1m -P5000 -p5001 -I$H:t:$1 $1 &
./nuttcp -t -w1m -P5000 -p5003 -I$H:t:$2 $2 &
./nuttcp -t -w1m -P5000 -p5005 -I$H:t:$3 $3 &
./nuttcp -t -w1m -P5000 -p5007 -I$H:t:$4 $4 &
./nuttcp -t -w1m -P5000 -p5009 -I$H:t:$5 $5 &
./nuttcp -t -w1m -P5000 -p5011 -I$H:t:$6 $6 &
./nuttcp -t -w1m -P5000 -p5013 -I$H:t:$7 $7 &
./nuttcp -t -w1m -P5000 -p5015 -I$H:t:$8 $8

A similar script to receive data from the server uses the “-r” option and “:r:” in the label text.

With sufficiently many nuttcp servers running, we can then verify the TCP/IP performance of 
each point-to-point connection, as well as aggregate TCP/IP performance on a server. 
Typical tests include:

� Testing the destination-ip localhost or 127.0.0.1

This probes the efficiency of the TCP/IP stack on the local machine. Depending on the 
server model, we typically observe between 6000 Mbps and 10000 Mbps, with 100%TX 
and over 50%RX busy times. On the IONs, lower performance is an indication of the 
700 MHz CPU speed.

FEN:/bgl/local/sbin> ./nuttcp -w1m 127.0.0.1 # run it several times...
11917.0625 MB /  10.00 sec = 9994.6927 Mbps 99 %TX 73 %RX

root@nsd01::/usr/local/sbin> ./nuttcp -w1m localhost # run it several 
times...
10934.9375 MB /  10.00 sec = 9172.7372 Mbps 100 %TX 73 %RX

root@ION $ ./nuttcp -w1m 127.0.0.1 # a ppc440 BG/L node (use ctrl-C to stop)
2458.4375 MB /   9.91 sec = 2081.7283 Mbps 53 %TX 45 %RX

� Single-stream performance between an NSD server and the FEN or SN

Since we do not use round-robin mode for the EtherChannels, a single stream will not 
utilize more than a single 1 Gbps Ethernet link even though there are multiple links in the 
channels. We can verify whether this one link is utilized effectively by running nuttcp 
between an NSD server and the FEN, using several runs of both transmit and receive 
mode:

nsd01:t:FEN-b:  1120.3252 MB /  10.01 sec =  938.9669 Mbps 14 %TX 35 %RX

Note: By default, nuttcp transmits data for 10 seconds. The timer it uses does not seem to 
work correctly on the IONs. You can press Ctrl-C when you run nuttcp on an ION to stop it 
transferring data. Alternatively, work from the other end of the connection and use the “-r” 
option to change the direction of the I/O.
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nsd01:t:FEN-b:  1121.6722 MB /  10.01 sec =  940.0999 Mbps 14 %TX 35 %RX
nsd01:t:FEN-b:  1120.7954 MB /  10.01 sec =  939.3755 Mbps 13 %TX 11 %RX

nsd01:r:FEN-b:  1121.6939 MB /  10.01 sec =  939.5753 Mbps 18 %TX 37 %RX
nsd01:r:FEN-b:  1120.9504 MB /  10.01 sec =  939.1449 Mbps 18 %TX 37 %RX
nsd01:r:FEN-b:  1120.8271 MB /  10.01 sec =  938.9185 Mbps 18 %TX 37 %RX

The achieved bandwidth is around 940 Mbps, which is close to “wire speed”: With the 
default 1500-byte MTU size, the maximum TCP throughput is 941.482 Mbps; jumbo 
frames with 9000-byte MTU would increase this to roughly 990 Mbps.

� Single-stream performance between an NSD server and an ION

The performance of the single 1 Gbps link of an ION should also approach wire speed. 
However, we observe that the achieved maximum rate is lower than for the FEN, and that 
the CPU load on the ION is significantly higher. This is an indication that the TCP/IP 
bandwidth of the ION is CPU-limited. In addition, transmit rates are roughly 6% higher 
than receive rates (viewed from the NSD server):

nsd01:t:r00-m0-nf-4:  1008.3381 MB /  10.00 sec =  845.6231 Mbps 6 %TX 99 
%RX
nsd01:t:r00-m0-nf-4:  1008.5152 MB /  10.00 sec =  845.7808 Mbps 6 %TX 100 
%RX
nsd01:t:r00-m0-nf-4:  1008.1824 MB /  10.00 sec =  845.5076 Mbps 6 %TX 100 
%RX

nsd01:r:r00-m0-nf-4:   948.5580 MB /  10.00 sec =  795.4084 Mbps 61 %TX 34 
%RX
nsd01:r:r00-m0-nf-4:   947.9534 MB /  10.00 sec =  794.9104 Mbps 61 %TX 33 
%RX
nsd01:r:r00-m0-nf-4:   950.2382 MB /  10.00 sec =  796.8169 Mbps 62 %TX 34 
%RX

Using jumbo frames would considerably improve the CPU load, so if this is possible in 
your environment, we do recommend to use jumbo frames on the Blue Gene I/O network. 
Note that you also need to configure this in the DB2 tables that describe the Blue Gene 
system properties.

� Multiple streams between an NSD server and several IONs

This is the case that most closely resembles file system I/O, where several IONs of a 
parallel job do I/O to each of the NSD servers. To perform these tests we use the above 
nuttcp-t-8stream (and nuttcp-r-8stream) script to run eight streams in parallel over the 
4-port EtherChannel. A typical output is shown here:

root@nsd01::/tmp> ./nuttcp-t-8stream \
r00-m0-nc-3 r00-m0-nc-4 r00-m0-nd-3 r00-m0-nd-4 \
r00-m0-ne-3 r00-m0-ne-4 r00-m0-nf-3 r00-m0-nf-4 | sort

nsd01:t:r00-m0-nc-3:   276.8828 MB /  10.03 sec =  231.4698 Mbps 2 %TX 25 
%RX
nsd01:t:r00-m0-nc-4:   550.6213 MB /  10.02 sec =  461.1474 Mbps 4 %TX 51 
%RX
nsd01:t:r00-m0-nd-3:   282.5860 MB /  10.03 sec =  236.3620 Mbps 2 %TX 25 
%RX
nsd01:t:r00-m0-nd-4:  1010.4202 MB /  10.01 sec =  846.7955 Mbps 7 %TX 99 
%RX
nsd01:t:r00-m0-ne-3:  1007.7137 MB /  10.00 sec =  845.3867 Mbps 7 %TX 99 
%RX
nsd01:t:r00-m0-ne-4:   282.2201 MB /  10.02 sec =  236.2378 Mbps 2 %TX 25 
%RX
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nsd01:t:r00-m0-nf-3:   572.4909 MB /  10.01 sec =  479.6471 Mbps 5 %TX 52 
%RX
nsd01:t:r00-m0-nf-4:   283.9076 MB /  10.03 sec =  237.4760 Mbps 2 %TX 26 
%RX

This output clearly shows that in this instance two of the eight connections are running at 
the IONs’ maximum speed over two of the ports, whereas the six other connections share 
the remaining two ports in the channel.

When all the TCP/IP tests have been done and the results are consistent with the expected 
performance of the given hardware, the next step is to verify the file system performance.

GPFS performance tests on the IONs
Before looking at application-level I/O performance, we perform measurements directly on 
the IONs. This shows the performance of the GPFS client on the ION without being affected 
by the hardware and software components that connect an ION with its Compute Nodes 
(CNs). The IONs are not accessible by end users, so this is only a testing scenario.

The bandwidth of the underlying GPFS file systems is much higher than the bandwidth of the 
1 Gbps Ethernet link of a single ION, so the file system is not a bottleneck for this test.

Building iozone for pSeries Linux and Blue Gene
We use the iozone benchmark for our file system performance tests on the IONs. It can be 
built from source without any modifications:

cd /tmp
wget http://www.iozone.org/src/current/iozone3_263.tar
tar zvf iozone3_263.tar
cd iozone3_263/src/current/
make linux-powerpc
cp -p iozone /bgl/local/sbin/iozone

Note that we did the build with a make target of linux-powerpc, not linux-powerpc64. This 
means that a 32-bit executable has been created, which runs on the 64-bit SN and FEN(s) as 
well as on the 32-bit IONs.

Performance measurements with iozone
The iozone benchmark was originally developed for commercial workloads such as database 
I/O, and has many options. For HPC we are mainly interested in sequential, large block I/O. 
This can be achieved with iozone by using an invocation like the following:

cd /your-filesystem ; iozone -r1m -s5g -i 0 -i 1 -w

This does I/O in chunks of 1 MB to a file of 5 GB. The “-i 0” option invokes a sequential 
write/rewrite test, and the “-i 1” option performs sequential read/reread. By using the “-w” 
option the test file will not be erased after a test, so in our case the read test can use the test 
file that is left over from the write test. Running this multiple times on a single ION produces 
output like the following (only the line with performance data is shown):

5242880    1024   81844   84563    69549    69407 

Note: The exact patterns vary from run to run because the AIX 5L EtherChannel uses 
hashmode=src_dst_port, and the source port of the connection is picked at random. 
This is also true for a GPFS connection where one side always uses port 1191 and the 
other side uses a random port.
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5242880    1024   82833   84937    68970    69719 
...

This gives the filesize, blocksize, write/rewrite and read/reread rates. Again, writes from an 
ION to GPFS are performing better than reads (82 MB/s versus 70 MB/s), whereas read and 
write on the FEN perform roughly at the same rate. 

Aggregate performance can be measured by running iozone in parallel on multiple IONs. 
Ideally this should scale linearly until the bandwidth of the network connections or storage 
subsystem is saturated.

GPFS performance tests on the compute nodes
The I/O rates that can be achieved at the application level are the ultimate test of the parallel 
file system. In MPI-parallel applications, there are two general patterns of I/O:

� All MPI tasks send their data to MPI task 0 using MPI calls, and this one task performs the 
disk I/O. This obviously is not scalable with respect to bandwidth. On Blue Gene with its 
relatively weak individual nodes, this pattern should be changed to perform disk I/O in 
parallel from many (if not all) MPI tasks.

� Each MPI task does disk I/O. This approach is scalable with respect to bandwidth, and 
comes in two flavors:

– Each task does I/O to its own individual file.

– Each task does I/O to a section of one shared file.

While the former approach is generally working in many environments (for example, it will 
even work without a global file system if the files are only scratch data), it may cause 
problems when thousands (or tens of thousands) of files are created. In contrast, the 
shared-file approach needs file system support for locking sections of a shared file (GPFS 
provides this feature). It avoids the potentially problematic creation of huge numbers of 
files, but on the other hand it may incur some extra cost for file system operations like a 
file close(), which need to synchronize state across all tasks that have the shared file 
open.

To test the parallel I/O bandwidth as well as the performance of operations such as open() 
and close(), we use the IOR benchmark developed by Lawrence Livermore National 
Laboratory (LLNL).

Building the LLNL parallel I/O benchmark IOR
The IOR benchmark is already adapted to Blue Gene. To build it, we only modified the 
Makefile to make sure it used the Blue Gene target:

cd /bglhome-local/admin/ibm010/
scp ....../IOR-2.8.10.tar.gz .
tar xzvf IOR-2.8.10.tar.gz
cd IOR-2.8.10/src/C/
vi Makefile
echo “edited Makefile to set uname to BGL, makefile.config to use mpicc”

To get a summary of IOR’s options, invoke it with the “-h” option after it has been built.

Performance measurements with IOR
Two different test cases were measured:

� The dependence of I/O rates through a single ION on the number of compute nodes that 
simultaneously perform I/O through this ION.
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� Scaling of aggregate I/O bandwidth with the number of IONs in a block.

We used the following IOR invocation to set parameters like the blocksize, transfer size, file 
size, the number of MPI tasks participating in the I/O, and to control whether I/O is performed 
to a single shared file or to individual files for each process (“-F” option):

mpirun -partition $BLOCK -verbose 1 -cwd $DIR $DIR/IOR \
-i $REPETITIONS -b 1m -t 1m -s 512 [-F] -N $N

Single ION performance
In the first test, the $BLOCK is a partition with a single ION and 32 CNs in it, which has been 
preallocated. We use coprocessor mode and vary the number of compute nodes $N. Each 
CN is writing a 512 MB chunk of data. For the small numbers of tasks tested here, there was 
no significant difference between the shared-file and individual-file modes. Only for larger 
task counts do the global operations like open() and close() become a significant factor.

Due to the way the ION and CNs communicate over the Blue Gene collective network, a 
single CN will typically not saturate an ION for reads. Figure 5 shows the read and write 
performance of a single ION when performing I/O from a varying number of compute nodes.

Figure 5   I/O performance of a single ION (MB/s versus number of CNs)

Write performance is around 70 MB/s. The read performance of a single CN is significantly 
less than the write performance. When multiple CNs are reading data in parallel, the 
aggregate read performance of the ION increases, but eventually gets lower again as larger 
numbers of CNs are added (data for 32 CNs is similar to that for 16 CNs).

Multiple IONs performance
When adding more IONs, the aggregate GPFS performance should scale up linearly until the 
bandwidth of the network connections or storage subsystem is saturated. To test this, we 
allocate a midplane with 16 IONs, and then use a mapfile to run IOR on one CN per ION. In 

Note: Small variations are caused by the fact that these runs are performed on a live 
system running a production workload. The performance data given here is for illustration 
of general trends only and should not be considered accurate with respect to absolute 
numbers.
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our case the first CN in the 16 pSets of the 512-node midplane block had the following torus 
coordinates (using coprocessor mode, so the 4th dimension is always zero):

cat ./MAPFILE
0 0 0 0
4 0 0 0
0 4 0 0
4 4 0 0
0 0 2 0
4 0 2 0
0 4 2 0
4 4 2 0
0 0 4 0
4 0 4 0
0 4 4 0
4 4 4 0
0 0 6 0
4 0 6 0
0 4 6 0
4 4 6 0

Using this mapfile and a preallocated midplane block R001, the performance measurements 
can then be done as follows:

for N in 1 2 3 4 5 6 7 8 12 16
do

mpirun -partition R001 -verbose 1 -mapfile ./MAPFILE -np $N \
-cwd $DIR $DIR/IOR -N $N -i $COUNT -b 1m -t 1m -s 512 | tee 

results512.$N.txt
done

Figure 6 shows the resulting aggregate I/O bandwidth when increasing the number of tasks, 
with task placement through a mapfile so each task uses a different ION.

Figure 6   I/O performance scaling with the number of IONs in a block (MB/s versus number of IONs)

Note: To find the location of the IONs on the torus network (more precisely the position of 
the first CN in an ION’s pSet, since the IONs themselves are not on the torus network), one 
can use the Blue Gene personality data structure as described in Appendix B.2 of the 
Unfolding Blue Gene redbook.
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As for the single-ION measurements, read bandwidth for a single ION is smaller than write 
bandwidth, since we are only using one CN per ION. Running, for example, 4 MPI tasks per 
pSet should improve that number.

ION memory considerations
It is useful to experiment with the various buffer sizes on the ION, but one needs to take care 
to not overrun the ION’s main memory of 512 MB. The two main consumers of memory on 
the ION are the GPFS daemon (especially its pagepool), and the CIOD daemon, which 
handles I/O to and from the compute nodes. Here is a footprint from an ION in a block with a 
pSet size of 32 (one ION handles 32 CNs):

$ ps aux|grep -E "USER|mmfs|ciod"
USER       PID %CPU %MEM   VSZ  RSS TTY      STAT START   TIME COMMAND
root        32  0.0  0.0     0    0 ?        S    13:57   0:00 [rpciod]
root       624  0.0  0.3  3040 2040 ?        S<   13:57   0:00 /bin/ksh 
/usr/lpp/mmfs/bin/runmmfs
root       819  0.2 27.5 539804 142352 ?     S<L  13:57   0:02 
/usr/lpp/mmfs/bin//mmfsd
root      1286  0.0 13.0 78052 67576 ?       SL   13:58   0:00 
/sbin.rd/ciod.440
root      1403  0.0  0.1  1608  520 ttyp0    S+   14:09   0:00 grep -E 
USER|mmfs|ciod

$ /usr/lpp/mmfs/bin/mmlsconfig |grep pagepool
pagepool 128M

$ cat /etc/sysconfig/ciod
export CIOD_RDWR_BUFFER_SIZE=1048576
export DEBUG_SOCKET_STARTUP=ALL

The memory footprint from a block with pSet size 16, where the CIOD on one ION 
correspondingly only handles half the number of CNs, shows a proportionally smaller 
memory consumption of CIOD:

$ ps aux|grep -E "USER|mmfs|ciod"
USER       PID %CPU %MEM   VSZ  RSS TTY      STAT START   TIME COMMAND
root        32  0.1  0.0     0    0 ?        S    14:13   0:00 [rpciod]
root       624  0.3  0.3  3040 2040 ?        S<   14:13   0:00 /bin/ksh 
/usr/lpp/mmfs/bin/runmmfs
root       819  2.4 27.4 539804 142124 ?     S<L  14:14   0:01 
/usr/lpp/mmfs/bin//mmfsd
root      1286  0.2  6.7 45156 34680 ?       SL   14:14   0:00 
/sbin.rd/ciod.440
root      1302  0.0  0.1  1608  520 ttyp0    S+   14:14   0:00 grep -E 
USER|mmfs|ciod

Obviously, the ION allocates two times the CIOD_RDWR_BUFFER_SIZE for each of the CNs that it 
serves (one buffer for each of the two processors on the CN), so it has sufficient buffer space 
if virtual node mode is used.

Summary
In this Redpaper we show the necessary steps to add an IBM System Blue Gene 
supercomputer to a heterogeneous GPFS multicluster environment. Particular attention is 
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paid to the networking setup and the peculiarities in configuring the various components for 
the Blue Gene I/O nodes. We also demonstrate how to do basic performance measurements 
to verify the setup, and the resulting data shows reasonable scaling of the I/O bandwidth with 
both the number of IONs and the number of MPI tasks per ION.

Three areas could be investigated further to improve performance and/or manageability:

� Jumbo frames could be used on the Blue Gene I/O network. This would improve TCP/IP 
performance of the IONs by reducing their CPU load.

� The new Blue Gene system software v1r3 contains improvements of various components, 
including modifications of the ciod daemon on the IONs, which should improve the read 
performance of a single CN per ION.

� GPFS Version 3.1 includes support for subnets, which drastically simplifies the routing 
setup for GPFS multicluster environments, as well as other performance improvements.

These areas have not been covered here, but will be investigated as soon as the customer 
environment that has been used for the study has been migrated to the new Blue Gene and 
GPFS software releases.
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