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Abstract

Typical computational grid users target only a single
cluster and have to estimate the runtime of their jobs. Job
schedulers prefer short-running jobs to maintain a high
system utilization. If the user underestimates the runtime,
premature termination causes computation loss; overesti-
mation is penalized by long queue times. As a solution,
we present an automatic reparallelization and migration of
OpenMP applications. A reparallelization is dynamically
computed for an OpenMP work distribution when the num-
ber of CPUs changes. The application can be migrated
between clusters when an allocated time slice is exceeded.
Migration is based on a coordinated, heterogeneous check-
pointing algorithm. Both reparallelization and migration
enable the user to freely use computing time at more than a
single point of the grid. Our demo applications successfully
adapt to the changed CPU setting and smoothly migrate
between, for example, clusters in Erlangen, Germany, and
Amsterdam, the Netherlands, that use different processors.
Benchmarks show that reparallelization and migration im-
pose average overheads of about 4% and 2%.

1. Introduction

While offering novel computing opportunities, the
boundaries between individual clusters of a computational
grid are still visible to users. In addition to heterogeneity as
a problem, the user is faced with a cluster’s job scheduling
mechanism that assigns computing resources to jobs. Usu-
ally, the scheduler prefers short-running over long-running
jobs and it prefers jobs that only need a small number of
CPUs over more demanding ones. Short jobs with a only
a few CPUs increase the cluster’s utilization, while long-
running jobs or jobs that require many CPUs often cause un-
productive reservation holes [26]. To be fair to waiting users
the job manager terminates jobs that exceed their claimed
resource limit. A terminated application loses all computed
work.

However, it is difficult to provide an exact estimation of
a job’s runtime, as often runtime depends on the input and is
influenced by unpredictable environmental issues (e. g. the
load of the network, which in turn depends on a cluster’s
overall load). Generally, two “solutions” exist for a user.
First, a user can request a too long time slice and accept the
penalty of more waiting time until the job runs. As an edu-
cated guess, a user might double the estimated time to avoid
losing results upon termination of the program. Second, the
program is rewritten into a number of smaller phases, which
can then run within more predictable time boundaries.

Reparallelization and migration are not only a third solu-
tion to this problem but in addition they blur the boundaries
between clusters. The user can start the application with a
certain number of CPUs and a small time estimate at any
cluster of the grid. If the application is about to exceed the
time slice or if a more powerful cluster becomes available,
the application checkpoints and migrates to another cluster,
transparently adapting to the potentially different architec-
ture and to a changed degree of parallelism.

Our solution consists of two parts: (1) OpenMP [15] pro-
grams can transparently alter the number of threads during
the execution of a parallel region, and (2) checkpoint-based
migration between clusters is supported which enables an
application to halt on one cluster and to resume on another
one. Both the origin and the target can be of different ar-
chitectures. Reparallelization is crucial for migration, since
the number of available CPUs is likely to change. And even
without migration, reparallelization allows the next local re-
source reservation to request fewer or more CPUs depend-
ing on the overall system load and queuing times. Our pro-
totype is implemented on top of the Software Distributed
Shared Memory (S-DSM) Jackal [23], a shared memory
emulation for Java on clusters. Jackal’s compiler supports
JaMP [12], an OpenMP 2.5 port to Java.

The paper is organized as follows. Section 2 covers re-
lated work. Section 3 describes the OpenMP reparalleliza-
tion. Section 4 discusses the migration and the distributed
checkpointing algorithm. Section 5 presents the perfor-
mance of both OpenMP reparallelization and migration.
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2. Related Work

To our knowledge, reparallelization and migration tech-
niques for OpenMP programs are not available. Related
work can roughly be divided into three categories: (1) repar-
allelization of OpenMP programs, (2) migration of pro-
cesses and MPI programs, and (3) checkpointing. (2) and
(3) are related as migration uses checkpointing.

Although the OpenMP specification allows to alter the
number of threads per parallel region [15], in existing im-
plementations except ours the number is fixed for the du-
ration of the region. Adaptation of the thread count by the
runtime system is restricted to code areas outside of paral-
lel regions. Only the extension of OpenMP for irregular
data structures proposed in [21] offers deferred cancella-
tion. While new threads may not be created, worker threads
can be scheduled to exit at certain cancellation points.

MOSIX [4], Sprite [6], and others, can migrate a pro-
cess from one node to another. In contrast to our solution,
they neither offer capabilities to change the degree of paral-
lelism nor can they migrate on heterogeneous clusters. Our
approach does not leave a process stub back at the old node
to access immobile resources such as open files and network
connections. Finally, we avoid kernel modifications, which
we find unacceptable for general-purpose clusters.

Cactus [3] and DGET [8] can adapt to changes in the
computing environment and acquire or release nodes while
an application is running. However, both enforce own pro-
gramming models in which the application has to extend a
framework with callbacks to its application-specific func-
tionality. Furthermore, our approach allows generic check-
pointing without manual registration of data.

There is work that focuses on the migration of MPI pro-
grams from one cluster to another. In GrADS [22] the ap-
plication registers its to-be-checkpointed data at a user-level
checkpointing library. Similar to our approach, the applica-
tion is migrated by checkpointing and restoring; the number
of processors can be changed upon a restart. In contrast to
our work, GrADS is limited to iterative MPI programs that
are explicitly designed by the programmer for reparalleliza-
tion. P-GRADE [13] checkpoints and migrates MPI/PVM
applications. However, the application’s degree of paral-
lelism is fixed after a migration. The mobile MPI programs
of [9] and AMPI [10] do not perform true reparallelization.
Instead, the application is over-decomposed for a high num-
ber of virtual processors that are in turn mapped to actual
MPI processes by multiplexing them in MPI function calls.
In contrast to our approach, a major limitation is the max-
imum degree of parallelism. Being unrelated to the appli-
cation’s general scalability, an application cannot use more
nodes than the number of virtual processors it started with.

Checkpointing [11] forms the basis of most migration
approaches. Checkpointing libraries such as libchkpt [16],

1 / / # omp p a r a l l e l
2 {
3 . . .
4 / / # omp a d j u s t
5 . . .
6 }

Figure 1. Example of the adjust directive.

or kernel modules such as BLCR [7] that dump the ad-
dress space of a process to disk cannot be used in heteroge-
neous environments. Porch [17] follows a compiler-based
approach to provide heterogeneous checkpointing, but is
limited to single processes. Multi-process checkpoints may
be created by [18, 1, 14], and many more. LAM/MPI [18]
offers multi-process checkpointing with BLCR and a coor-
dinated (stop-the-world) algorithm. In [1], the application’s
control flow is analyzed to find locations of checkpointing
initiations that achieve a consistent global state. In [14],
synchronized clocks are employed to maintain a consistent
state for a checkpoint. Our checkpointing approach uses
a coordinated algorithm for simplicity, as the overhead of
writing the heap and the thread stacks to disk completely
hides the coordination overhead.

3. Reparallelization

While prior work creates a large number of virtual pro-
cessors and maps the virtual to the physical processors
(called over-decomposition), our approach modifies the ac-
tual parallelization and data partitioning at the application
level. The advantage is that this does not limit the maxi-
mum degree of parallelism as done by over-decomposition.

In our approach, the number of worker threads can be
changed at certain points in the program, called adjustment
points. They can be inserted either manually by means of
the adjust directive (see Fig. 1) or automatically by the com-
piler (future work). At adjustment points, new threads can
enter a parallel region or existing ones can be terminated.

Our reparallelization covers all OpenMP constructs. Be-
low we first discuss reparallelization of work-sharing con-
structs. Then we examine the differences between the loop
schedule types. Finally, we study adjustment issues of re-
ductions and parallel regions.

3.1. Repartitioning of work-sharing con-
structs

OpenMP programs often process a data structure in par-
allel by means of the for work-sharing construct that assigns
different parts of an iteration space to the available worker
threads. Hence, the reparallelization of the for directive is
crucial for the reparallelization of OpenMP codes.

According to [15], size and shape of the iteration space
of an OpenMP for construct are known before the loop
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Figure 2. Iteration space layout with itera-
tions, chunks, and partial chunks.

starts. The iteration space can be divided into chunks of
a fixed size that are then processed by the worker threads.

A dynamic reparallelization must take into account what
fraction of the iteration space is already computed, and what
remains to be done by the changed number of threads, see
Fig. 2. To be flexible, adjustment points may be placed at
arbitrary code locations. Hence, at some point in time, some
chunks are still unprocessed, others are partially processed
(i. e. some of their iterations are done), and some chunks
are completed. In the partially processed chunks some iter-
ations are completed, while other iterations still need to be
done. There might even be single unfinished iterations.

If a worker thread is removed at an adjustment point in
the body of a work-sharing construct, another thread has to
take over the remaining work. Hence, a description of a
partial chunk has to be created and stored in a set of still
uncompleted chunks. In addition to an iteration space de-
scription (loop counter value, the lower and upper bounds,
and the step width or—in more complex situations—a bit
vector) the partial chunk description must store the number
of the adjustment point (i) that caused its creation, and the
values of all live variables for subsequent use by another
worker. Standard compiler analysis is used to identify this
set of live variables. To copy the values, their type must
be known to the compiler. Hence, our approach relies on
type-safe environments.

When new threads are added to the work force, they can
grab any unprocessed chunk and start executing the region’s
code for that chunk. (We skip the question where the un-
processed chunks come from for now.) If no unprocessed
chunks are left, new threads have to take on partial chunks.
But instead of starting to execute the region’s code from its
beginning, it is necessary to jump to the position of the ad-
justment in the code. Hence, we need a jump table to branch
to the appropriate adjustment point (START i).

With partial chunks and the jump table explained, we
are ready to discuss the compiler’s code template for the
i-th adjustment point (see Fig. 3). When an adjustment is
requested, a worker first checks if it is selected for termi-
nation. If so, it stores a partial chunk description and ter-
minates. The master thread (ID 0) adjusts JaMP’s internal
data structures if the number of workers has changed. When
a thread takes on a partial chunk for adjustment point i, it

1 i f ( a d j u s t m e n t R e q u e s t e d ( ) ) {
2 i f ( r e m o v e S e l f ( ) ) {
3 s t o r e P a r t i a l C h u n k ( ) ;
4 d o T e r m i n a t i o n ( ) ;
5 } e l s e i f ( t h r e a d I d ( ) == 0
6 && changeThreadCount ( ) ) {
7 a d j u s t D a t a S t r u c t u r e s ( ) ;
8 c r e a t e T h r e a d s ( ) ;
9 }

10 f i n i s h A d j u s t m e n t ( ) ;
11 }
12 goto END i
13 START i :
14 l o a d P a r t i a l C h u n k ( ) ;
15 END i :

Figure 3. Code template adjustment points.

1 b a r r i e r I n c r e m e n t ( ) ;
2 boolean f i n i s h e d = f a l s e ;
3 whi le ( ! b a r r i e r G o a l R e a c h e d ( )
4 | | p a r t i a l B l o c k s A v a i l a b l e ( ) ) {
5 p a r t i a l B l o c k = p o p P a r t i a l B l o c k ( ) ;
6 i f ( p a r t i a l B l o c k != n u l l ) {
7 b a r r i e r D e c r e m e n t ( ) ;
8 s t a r t L a b e l = p a r t i a l B l o c k . g e t L a b e l ( ) ;
9 goto JUMP TABLE ;

10 }
11 b a r r i e r W a i t ( ) ;
12 }

Figure 4. Reparallelization barrier at work-
sharing constructs.

jumps to the START i label, loads the iteration space infor-
mation and the live variables from the partial chunk descrip-
tion, and starts execution.

At the end of a work-sharing construct there must always
be a barrier synchronization. If the parallel region has an
adjustment point, the barrier code is more complex, since
partial chunks might remain to be processed by the existing
threads. The skeleton code given in Fig. 4 shows that a
work-sharing construct is completed when (1) all chunks
have been processed, (2) no partial chunks are left, and (3)
all worker threads have arrived at the loop barrier construct.

3.2. Loop schedule types

OpenMP defines different schedule types for the assign-
ment of loop chunks to worker threads. While the compiler
uses the common code transformation template discussed in
Section 3.1 for all types, there are schedule specific issues.

If no loop schedule type is specified, the iteration space
is divided such that every worker thread receives exactly
one chunk. If an adjustment adds a new thread, at least one
new chunk is needed as well. Hence, the whole iteration
space has to be redistributed. This requires a bit vector in
which a bit is set for every finished iteration. At the adjust-
ment point, a new set of chunks can then be created by first
computing the unprocessed iterations, dividing them by the
new number of worker threads, and then assigning the same
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Figure 5. Static reassignment of chunks.

number of unprocessed iterations to each of the threads.
Since in a dynamic loop schedule threads request small

chunks from a global work pile anyway, new worker threads
can participate in the computation without further effort.

In a static loop schedule, all chunks are assigned to the
worker threads at the beginning of the loop in a round-
robin fashion. Therefore, this assignment has to be up-
dated when the number of worker threads changes. Since
a new assignment can only be computed if it is known
which chunks have already been processed, every worker
thread memorizes the list of completed chunks. Reassign-
ment is done in two steps. First, all chunks are assigned as
usual to the worker threads in a round-robin fashion. Since
completed chunks are marked, they can be skipped later
on. Step 1 creates an unbalanced load since some worker
threads receive more unprocessed chunks than others. Step
2 relocates unprocessed chunks from over-loaded threads to
under-supplied ones to achieve a better load-balancing. We
have adapted an algorithm from [2] for this purpose.

An example of static reassignment is given in Fig. 5. The
iteration space is distributed over two threads. Thread 0 has
not yet completed any chunks, whereas thread 1 has com-
puted four chunks (marked “X”). After doubling the number
of threads, step 1 redistributes the chunks to four threads in
a round-robin fashion. While threads 0 and 2 each receive
three unprocessed chunks, the other two only receive one
uncomputed chunk. To improve load-balance, step 2 moves
two chunks to lighter-loaded threads.

3.3. Reductions

We now discuss the reparallelization of OpenMP reduc-
tions that combine the partial results accumulated by all
threads into a single result at the end of a parallel region.

In work-sharing constructs, every single iteration con-
tributes to the global result. In case of reparallelization,
only termination of threads needs special treatment. There
are two cases. First, a thread that is terminated at the begin-
ning of a work-sharing construct still has to contribute its
already accumulated partial result to the reduction. Second,

1 / / # omp p a r a l l e l
2 {
3 C o l l e c t o r c = . . . ;
4 i n t z = . . . ;
5 / / # omp f o r
6 f o r ( i n t i = . . . ) {
7 / / # omp a d j u s t
8 compute ( i , c , z ) ;
9 }

10 }

Figure 6. Variable context at an adjustment
point.

a thread that is terminated inside the loop body stores its
partial results in the partial chunk descriptor. When another
thread takes on this partial chunk, it can no longer simply
copy all the live variables from the partial chunk descrip-
tor. Instead of overwriting it, the reduction value has to be
merged with the thread’s partial result.

3.4. Context for added worker threads

When a worker thread takes on a partial chunk, all live
variables are contained therein. On the other hand, when
new worker threads are added to a work-sharing construct,
they start execution at the beginning of the construct. If
there are live variables that have been defined outside of
the work-sharing construct, they have to be initialized with
valid values for the new worker threads. For that purpose,
the set of live variables is stored by the master thread di-
rectly before the work-sharing construct and a copy of it is
loaded by the added worker threads.

In Fig. 6, a variable c of a class called Collector is created
inside of the parallel region by every worker thread and used
in some computation. Moreover, there is a variable z of
type int. Both c and z are live variables from outside of the
work-sharing construct. When a worker thread is added at
the adjustment point, it has to receive valid values for c and
z. Therefore, the set of live variables is initialized from the
live variables of the master thread.

The values of variables of primitive data types (such as z)
are copied. The clone() method is used for objects of classes
that implement the Cloneable interface. For other classes
and if standard cloning does not produce a valid copy, spe-
cial cloning facilities can be provided by the user.

3.5. Limitations

Our approach has the following three limitations:
a) Reparallelization can only be performed if the com-

plete information about the parallelization and the partition-
ing of the work-sharing constructs is available. In Fig. 7
parallelization is done by OpenMP, but work distribution is
programmed explicitly. The example code introduces an in-
direct data dependence from the thread ID to array[i]. Due
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1 void d e p e n d e n t ( double [ ] a r r a y ) {
2 / / # omp p a r a l l e l
3 {
4 i n t i d = JampRuntime . getThreadNum ( ) ;
5 i n t c n t = JampRuntime . getNumThreads ( ) ;
6 i n t sz = a r r a y . l e n g t h / c n t ;
7 i n t f r = sz ∗ i d ;
8 f o r ( i n t i = f r ; i < f r + s i z e ; i ++) {
9 / / c o m p u t a t i o n u s i n g a r r a y [ i ]

10 }
11 }
12 }

Figure 7. Dependency to the thread ID.

1 void i n d e p e n d e n t ( double [ ] a r r a y ) {
2 / / # omp p a r a l l e l f o r
3 f o r ( i n t i = 0 ; i < a r r a y . l e n g t h ; i ++) {
4 / / c o m p u t a t i o n u s i n g a r r a y [ i ]
5 }
6 }
7 }

Figure 8. Corrected example of Fig. 7.

to that data dependence a reparallelization causes undefined
behavior, as the thread with a given ID might have been re-
moved. Hence, we disallow the use of getThreadNum() and
getNumThreads() and the compiler issues warnings. Fig. 8
is the correctly parallelized version of Fig. 7.

b) If worker threads are added to or removed from a par-
allel region, the number of times every statement is exe-
cuted can change. This might affect program semantics.
Assume a thread is removed at the barrier in Fig. 9. Then
fewer “B”s than “A”s are printed. If such a behavior is un-
desired, the programmer can disallow reparallelization by
adding the adjust(none) clause to the parallel directive.

c) As mentioned above, the live variables of the master
thread are copied to a newly created thread. However, this
might not be the desired application’s semantics. For exam-
ple, when a variable is used to store the current thread ID,
the new thread would receive the ID of the master thread.
The programmer has to be aware of this issue and deal with
it accordingly. However, since in most OpenMP programs
the use of a thread ID indicates a weak application design,
we consider this to be an acceptable restriction of the pro-
gramming model.

4. Migration

Checkpointing the DSM space of a Jackal application
forms the basis of our migration approach. Checkpoint-
ing allows to save the computational state of an applica-
tion [11]. The state can then be transferred to another clus-
ter, on which the application is resumed. We have presented
a compiler-based approach for migrating threads in hetero-
geneous clusters in [24]. It provides a means to check-
point the computational state of a single thread, to move
the state to another machine of a potentially different archi-

1 / / # omp p a r a l l e l
2 {
3 System . o u t . p r i n t l n ( ”A” ) ;
4 / / # omp b a r r i e r
5 System . o u t . p r i n t l n ( ”B ” ) ;
6 }

Figure 9. Limitations example.

tecture, and to continue the computation there. For migra-
tion of OpenMP applications, this papers adds a coordinated
checkpointing algorithm for multi-process applications. We
first sketch how a checkpoint is created for a single thread.
We then shortly describe the extensions made to support
checkpointing of multi-process applications.

4.1. Thread Checkpointing

A generic stackframe format to store the current stack of
a thread is the basis of platform-independence in [24]. For
each call-site of a function, the compiler creates so-called
checkpointers and uncheckpointers. Checkpointers map the
stackframe of the function at that call-site to a generic,
machine-independent format. In turn, uncheckpointers load
a function’s stackframe from the generic format.

The computational state at a given call-site can be de-
scribed by the live variables at that location. For each of the
live variables, the compiler creates a unique Usage Descrip-
tor String (UDS) that platform-independently describes the
variable. The generic stackframe format consists of a set
of tuples (UDS, value). As described in [24], the creation
of the UDS is mainly based on the following assumption:
the value of a variable A at a given point in a program is
determined by the preceeding computation H that affected
A. This computation has to be the same on all architectures.
Otherwise, the program would compute different results on
different architectures. Hence, the central idea is to encode
H in the UDS. For brevity, only the rules for constructing a
UDS for H are listed in Fig. 10. The details can be found
in [24].

As an example of how to construct the UDS, let us con-
sider a Java function (Fig. 11) with three basic blocks (B0
through B2). At the call-site of createCheckpoint() in B2,
two variables a and b are live. According to the rules R1 and
R7 of Fig. 10, the compiler creates the UDS “C:1000@B:0”
for b, which reads as “variable b is initialized with value
1000 in basic block B0”. A more complex UDS is created
for a. The compiler searches backwards from the call-site in
B2 to find all reaching definitions for a. For the assignment
in B1 it creates the partial UDS “+ a C:1@B1” (R6 & R7).
It then continues to search for the contained a. This deliv-
ers “C:0@B0” (R1 & R7). Hence, the final UDS for a at the
call-site is “+ C:0@B0 C:1@B1”, a platform-independent
description of the computation of the value of a in line 8.

The algorithm above forms the basis for our checkpoint-
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R1 “A = constant”→ string(A) = “C:<constant>”.

R2 “A = B”→ “string(A) = string(B)”.

R3 “A = call” → string(A) = “call:<index of call in all calls
inside the containing function>”.

R4 “A = param(X)”→ String(A) = “P:<index of param(X)>”.

R5 “A = object access(expression, field)” → string(A) = “ac-
cess:field” and recurse into expression.

R6 “A = B op C” → string(A) = “< op >” + string(B) +
string(C), where op is one of the binary operands such as
+,−, ∗, /.

R7 When making a modification to an UDS by one of the above
rules, add a basic block identifier to the string: string(A) =
string(A) + “@B:<basic-block-number>”

Figure 10. UDS construction rules.

1 i n t someFunc t ion ( i n t c ) {
2 B0 i n t a = 0 ;
3 B0 i n t b = 1000 ;
4 B0 i f ( c != 0)
5 B1 a = a + 1 ;
6 B2 / / l i v e v a r i a b l e s : {a , b}
7 B2 c r e a t e C h e c k p o i n t ( ) ;
8 B2 re turn a + b ;
9 }

Figure 11. Java checkpointing example.

ing approach. A thread is checkpointed by sequentially call-
ing the checkpointers for each function on the call stack.
In addition, the reachable objects in memory are traversed
and written to disk. In contrast to standard Java serializa-
tion [20], this is done asynchronously. Chunks of data are
handed off to a service thread for compression and for writ-
ing the compressed data to disk with bulk transfers. Hence,
the checkpointer does not need to wait for the disk to catch
up. As soon as the checkpointer has finished, the applica-
tion can continue while the checkpoint data is still being
written to disk in the background.

4.2. Multi-process checkpointing

A Jackal application consists of a set of processes that
together form the application. With JaMP, each process re-
ceives one OpenMP thread. However, Jackal processes con-
tain not only application-specific worker threads but also
execute several service threads such as the garbage collector
and the finalizer thread that both are needed by the Java run-
time. To checkpoint a multi-process application, we have
implemented a coordinated checkpointing algorithm. It (1)
stops all local threads, (2) ensures that no messages are on
the network, and (3) checkpoints all the threads of a process.

A single-process application is checkpointed by saving
the state of all threads and the heap to disk. This is ac-
complished by collecting all threads in a special barrier, ef-
fectively stopping all threads. Whenever, a thread reaches

a synchronization point (e. g. Object.wait(), Thread.sleep())
it checks whether a checkpoint is requested. If so, it triggers
the thread checkpointing algorithm. Otherwise, it proceeds
with the regular synchronization code.

Already blocked threads that wait for a notification or a
timeout to occur need a special treatment. To inform them
about a new checkpoint request, we wake them up by means
of a CheckpointException. The threads then checkpoint and
re-enter their waiting state. Hence, from an application
point of view, they seem to never leave their blocking state.

Multi-process checkpointing is achieved by means of co-
ordinated checkpointing [11]. To request a checkpoint, the
master node sends a broadcast to all other nodes. Due to the
FIFO property of Jackal’s communication layer, this broad-
cast message pushes all data messages through the network
to their respective receivers. As soon as another node re-
ceives a checkpoint request message, it informs its threads
about the checkpoint request. All threads continue until
they reach either a synchronization point or a call of cre-
ateCheckpoint(). After all local threads are blocked, the
nodes send a broadcast message to clear the network of
application traffic. Then, all local threads start to write
the checkpoint. This implements a race-free stop-the-world
approach, since all threads block and the network is clear
of messages. Hence, no rollback operations are necessary
upon restarting from a checkpoint.

4.3. Interaction with reparallelization

When the application resumes from the checkpoint, the
number of nodes that execute the program can change. If
the new number is lower, the runtime system merges the
images of the removed nodes into the resuming ones. If the
number is increased, new nodes start with empty images.

The reparallelization runtime directly interacts with the
checkpointing system by being notified of changes when-
ever an application is resumed from a checkpoint. The run-
time then starts the reparallelization of the currently active
parallel region and adapts the thread count such that each
node receives one OpenMP thread. Data distribution is han-
dled automatically by the Jackal DSM runtime system.

5. Performance

To show the feasibility of our reparallelization and mi-
gration approach, we have undertaken a set of experiments.
The experiments were performed on a cluster of quad (2x
dual core) AMD Opteron 2.0 GHz 64 bit nodes with 4 GB
of main memory and Gigabit Ethernet. The cluster is lo-
cated at the University of Erlangen, Germany. To show
the effects of network traffic, we only used one CPU per
node. The results presented are the average over 5 runs of
each benchmark. Overheads are computed as the relative
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Table 1. Runtimes, overheads, and checkpoint sizes (in MB) for the benchmark suite.
LBM SOR Crypt Raytracer

Thr. Time Adjust- Check- CP Time Adjust- Check- CP Time Adjust- Check- CP Time Adjust- Check- CP
(sec) ment point size (sec) ment point size (sec) ment point size (sec) ment point size

Overhead Overhead Overhead Overhead
1 924 -2.5% 0.3% 117 430 0.9% 0.1% 16 91 9.7% 3.1% 80 473 3.6% 1.7% 1
2 467 -2.1% 0.2% 122 221 2.9% 0.3% 16 52 9.9% 2.6% 80 234 2.3% 1.7% 1
4 242 0.4% 0.3% 128 118 12.9% -0.2% 18 29 5.1% 5.5% 80 117 3.1% 2.7% 1
8 127 2.6% 1.1% 136 65 15.9% 0.7% 19 19 3.5% 8.8% 80 60 3.0% 4.7% 1

increase of runtime of each benchmark without adjustment
points and/or checkpointing.

5.1. Benchmarks

For our evaluation we implemented a compute inten-
sive Lattice-Boltzmann Method (LBM) [25] benchmark. In
addition, we use JOMP’s Java-OpenMP port of the JGF
benchmarks [19, 5]. We skip section 1 of the benchmark
suite since it solely contains microbenchmarks for individ-
ual OpenMP directives, such as creation of parallel regions.
From section 2 and 3, we study SOR, Crypt, and Raytracer.
(Euler uses the unsupported OpenMP construct ordered.
Sparse introduces data dependencies to the thread ID, which
we disallow. LU Fact and Monte Carlo are not suited to
be executed on a DSM system as the JGF versions contain
large sequential fractions and/or suffer from false-sharing.)

LBM simulates fluids with cellular automata. Space and
time are discretized and normalized. In our case, LBM op-
erates on a 3D domain divided into 120×120×120 cells
that hold a finite number of states. In one time step the
whole set of states is updated synchronously by determin-
istic, uniform update rules. The kernel is parallelized in a
straightforward way; the time-stepping loop is parallelized
with parallel and the loop over the x-axis of the grid is paral-
lelized with the for directive (default scheduling). We have
also parallelized the data allocation using parallel for such
that the nodes that work on a partition of the grid also per-
form the allocation. This is a well-known optimization for
OpenMP programs on NUMA architectures. The bench-
mark computes 50 time steps over the 3D grid.

SOR solves a discrete Laplace equation with simple
over-relaxation (200 iterations) in a red-black style on an
10,000×10,000 grid. The outer loop is parallelized with the
parallel directive while the inner loop over the grid is par-
allelized with the for directive and default scheduling. The
data allocation was parallelized with parallel for. Crypt per-
forms IDEA encryption and decryption of 140 MB of data
and strongly depends on bit and byte operations. The main
encryption/decryption loop is parallelized with a parallel
for with default scheduling. The Raytracer renders a scene
of 64 spheres in a picture with a resolution of 800×800. The

main loop of the benchmark is parallelized with the paral-
lel for directive and dynamic scheduling with chunk size
10. Hence, each thread renders a partition of the picture.
Raytracer works on a read-only data set (the spheres) and
represents the picture as an 1D array.

5.2. Overheads

Table 1 shows the runtimes of the individual bench-
marks. Overall, the average overhead for supporting dy-
namic adjustment of the thread count is approximately 4%,
which can be considered acceptable. The overhead is deter-
mined by the amount of work of the parallel region, as the
code transformation adds a constant overhead. Checkpoint-
ing imposes a runtime overhead of roughly 2% on average
when creating one checkpoint during the execution of the
benchmark. The overhead is influenced by the data set of
the application and is almost unrelated to the disk transfer
rate. For realistic applications and realistic data sizes, the
overhead is negligible (below 1%).

Inserting adjustment points into the SOR kernel de-
creases performance by upto 15.9% (see Table 1). This
large overhead is caused by adding a constant overhead per
adjustment point to a very low runtime per iteration. Thus,
the relative overhead per iteration becomes significant. For
LBM a negative overhead of roughly 2% can be observed
due to processor caching effects.

5.3. Speedup

For the speedup measurements, we have set up Jackal
such that half of the processes received OpenMP threads
while the other half is idling. At benchmark half-time, the
thread count is doubled. The additional threads are spawned
on the idle nodes. This scenario is reversed for the removal
of workers.

Fig. 12 shows the runtime per LBM time step over time.
At time step 25, the number of threads is doubled. As can be
seen on the left, the runtime roughly decreases by a factor
of 1.8. A slow-down of of about 2 occurs when the num-
ber of threads is halved (middle). This closely matches the
speed-up behavior of LBM (on the right). The peak run-
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Figure 12. Runtime per LBM time step and speed-up graph of LBM.

Figure 13. Runtime per SOR red-black iteration and speed-up graph of SOR.

time after the adjustment in iteration 25 is caused by the
DSM protocol that needs to redistribute the data after the
reparallelization, i. e. that moves the data accessed (roughly
3.6 LBM cells) by the threads to their respective execution
nodes. Note that such delays are caused by any NUMA
system and the height strongly depends on the latencies of
the NUMA implementation. In addition, a NUMA imple-
mentation that allows migration of data is desirable to avoid
performance penalties after reparallelization.

A similar result is achieved for SOR. As Fig. 13 shows,
the runtime of a single SOR red-black iteration is decreased
by a factor of 1.8 when the number of threads is doubled
at iteration 100. The runtime peak at iteration 26 is again
caused by the DSM runtime that needs to redistribute data
(10,000 arrays or 10,000 messages over the network). Crypt
and Raytracer also show the desired speed-up behavior (not
depicted for brevity), when the number of threads changes.
When doubling the thread count, both applications achieve
a speedup of about 1.9, while they yield a slowdown of 1.9
when the thread count is halved. The runtime peak for Crypt
and Raytracer is lower, as the data that needs to be redis-
tributed is smaller.

5.4. Migration

To demonstrate our approach, we migrated LBM from
the cluster at Erlangen, Germany, to a cluster at the Vrije
Universiteit in Amsterdam, the Netherlands, and back. The
cluster in Amsterdam uses dual Intel Pentium 3 CPUs with a
1 GHz processor clock, 1 GB of memory, Gigabit Ethernet,
and Myrinet for each node. LBM is migrated two times: (1)
at the 16th time step from Erlangen to Amsterdam, and (2)
at the 33rd time step from Amsterdam back to Erlangen.

Figure 14. Migration of LBM.

Fig. 14 shows the times for one LBM time step. After the
16th iteration we have manually aborted and migrated the
application from Erlangen to Amsterdam. The number of
CPUs was hereby increased by a factor of four. The perfor-
mance roughly doubles as the target CPUs are slower than
the originating CPUs. In time step 33, LBM is moved back
to Erlangen. This time, the number of CPUs was halved.
Please note, that the time to transfer the checkpoint image
and to wait for the cluster reservation are not included. The
time to transfer the checkpoint of LBM between the clus-
ters roughly was 50 sec. The total queue time in the cluster
queues was about 5 minutes.

6. Conclusion

We have presented a novel approach to reparallelize and
to migrate OpenMP applications between clusters of differ-
ent size and architecture. This helps to make the boundaries
of individual clusters in a computational grid less visible.
A user can start an application at an arbitrary cluster in the
grid. When the time slice is about to be exceeded, a check-
point can be created. The application can either migrate
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to another cluster or restart on the current system with a
new reservation. Reparallelization automatically adapts to
the new number of available processors. Reparallelization
is restricted to (1) well-formed OpenMP programs, and (2)
type-safe programming languages.

Benchmarking shows that the reparallelization imposes
little overhead and scales as expected. When the number of
threads is changed, the new parallelization achieves speed-
ups that are comparable to the regular speed-up behavior of
the application with that number of processors. The over-
head of inserting extra code for adjustment points is almost
negligible compared to the overall runtime. The same holds
for the overhead of checkpointing the application state.
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[21] M. Süß and C. Leopold. Implementing Irregular Parallel
Algorithms with OpenMP. In Proc. of Euro-Par, pages 635–
644, Dresden, Germany, August 2006.

[22] S. Vadhiyar and J. Dongarra. Self Adaptivity in Grid Com-
puting. Concurrency - Practice and Experience, 17(2–
4):235–257, February/April 2005.

[23] R. Veldema, R. Hofman, R. Bhoedjang, and H. Bal. Run-
time Optimizations for a Java DSM Implementation. In 2001
Joint ACM-ISCOPE Conf. on Java Grande, pages 153–162,
Palo Alto, CA, USA, June 2001.

[24] R. Veldema and M. Philippsen. Near Overhead-free Hetero-
geneous Thread-migration. In Proc. of the IEEE Intl. Conf.
on Cluster Computing, pages 145–154, Boston, MA, USA,
September 2005.

[25] D. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lat-
tice Boltzmann Models. Number 1725 in Lecture Notes in
Mathematics. Springer, 2000.

[26] D. Zotkin, P. Keleher, and D. Perkovic. Attacking the
Bottlenecks of Backfilling Schedulers. Cluster Computing,
3(4):245–254, December 2000.

Seventh IEEE International Symposium on Cluster Computing and the Grid(CCGrid'07)
0-7695-2833-3/07 $20.00  © 2007


