
Extending OpenMP* 
to Clusters

White Paper
Jay P. Hoeflinger

Senior Staff Software Engineer

Intel Corporation



�

White Paper   Extending OpenMP* to Clusters

Table of Contents
Executive Summary .........................................................................................................................................................................................................3

      Introduction .....................................................................................................................................................................................................................3

OpenMP* Programming .................................................................................................................................................................................................3

      The OpenMP Execution Model ..............................................................................................................................................................................3

      The OpenMP Memory Model ..................................................................................................................................................................................4

DSM-based OpenMP Programming ........................................................................................................................................................................5

Implementing OpenMP with Distributed Shared Memory ....................................................................................................................5

      The DSM Mechanism ..................................................................................................................................................................................................5

      Mapping OpenMP to the DSM Mechanism ......................................................................................................................................................6

Performance Considerations for Cluster OpenMP ......................................................................................................................................7

      The Cost of Memory Operations .........................................................................................................................................................................7

      RMS Workloads ..............................................................................................................................................................................................................7

Performance Results ......................................................................................................................................................................................................8

Future Work ...........................................................................................................................................................................................................................8

Conclusion ..............................................................................................................................................................................................................................9

References .............................................................................................................................................................................................................................9



�

Extending OpenMP* to Clusters    White Paper

Executive Summary
OpenMP* is a well-known parallel programming paradigm for shared-memory multiprocessors. In the past, 
OpenMP has been confined to Symmetric Multi-Processing (SMP) machines and teamed with Message Passing 
Interface (MPI) technology to make use of multiple SMP systems. A new system, Cluster OpenMP*, is an 
implementation of OpenMP that can make use of multiple SMP machines without resorting to MPI. This advance 
has the advantage of eliminating the need to write explicit messaging code, as well as not mixing programming 
paradigms. The shared memory in Cluster OpenMP is maintained across all machines through a distributed 
shared-memory subsystem. Cluster OpenMP is based on the relaxed memory consistency of OpenMP, allowing 
shared variables to be made consistent only when absolutely necessary. 

Introduction
It is generally agreed that shared-memory parallel programming 

leads to lower program-development costs than parallel 

programming by message-passing. The advantage of being 

able to access data without thinking about whether it must be 

fetched first is a significant one, relieving the programmer of a 

level of complexity. Further, complicated data structures in modern 

algorithms often lead to irregular and rapidly changing patterns of 

data access, making it even more difficult to write an MPI program 

using them.

The OpenMP parallel programming language1 has a further 

advantage over other shared-memory programming languages, 

because it is a directive language embedded in a serial program 

written in a base language (currently the base languages are C, 

C++, and Fortran), giving the programmer a clear way to retain the 

serial program intact. It is possible to build an OpenMP program 

that can be run and debugged serially, nicely partitioning serial 

program issues from parallel ones.

One problem with OpenMP and other shared-memory 

programming languages is that programs using these languages 

have been confined to run on a single multiprocessor machine, 

and if a large number of processors is desired, that machine can 

be very expensive. Bus-based multiprocessors don’t scale well 

beyond about four processors. Machines supporting more than 

four processors typically have employed more sophisticated (and 

expensive) interconnects. The need for an expensive machine has 

limited the penetration of OpenMP in many markets. Message-

passing programs have been successful on large clusters, because 

cheap interconnects have made them much less expensive than 

a shared-memory machine of the same processor count, and the 

largest clusters simply have no shared-memory counterpart.

A new software system from Intel has the potential to change 

the dynamics of this situation. Cluster OpenMP has extended the 

OpenMP programming language to make it usable on clusters. 

This change combines the advantages of the easier programming 

model with the advantage of usability on cheaper hardware.

Cluster OpenMP currently runs on Itanium®-based platforms 

and on systems based on processors that support Intel® EM64T 

running Linux*, with support for sockets and the uDAPL verb API.7 

Cluster OpenMP has been tested on Ethernet and Infiniband* 

interconnects, although other interconnects will be supported in 

the future.

In this paper, we point out key aspects of OpenMP, and then 

describe how Cluster OpenMP takes advantage of the OpenMP 

relaxed-memory model to hide communication latency. We describe 

how various OpenMP operations are implemented by Cluster 

OpenMP, as well as discuss performance considerations in a Cluster 

OpenMP program and show some performance results. Finally, we 

touch upon future plans for the Cluster OpenMP software. 

OpenMP Programming
The OpenMP Execution Model
An OpenMP program executes according to a fork-join model. 

This means that an OpenMP program begins execution as a 

single thread, called the master thread, and when a parallel 

directive is encountered by that thread, execution forks and 

the parallel region is executed by a team of threads. When the 

parallel region is finished, the threads in the team join again 

at an implicit barrier, and the master thread is the only thread that 

continues execution.
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This fork-join structure continues in a nested way, if necessary. 

If a parallel region is currently active and any thread in the team 

that is executing the parallel region encounters another parallel 

directive, execution forks again, another team of threads is 

formed, and those threads execute the new parallel region, then 

join at its end.

OpenMP provides a menu of synchronization constructs: critical 

sections for mutual exclusion, barriers to hold threads until all in a 

given team have arrived, atomic constructs to confer atomicity on 

individual operations, reduction operations, and a way of ordering 

code sections within a parallel loop. These synchronization 

operations make it possible to implement most of the desired 

forms of cooperation between threads.

The OpenMP Memory Model
OpenMP provides memory that is shared by all threads. Each 

thread reads and writes the shared memory directly, but the 

memory consistency is relaxed, in that writes to memory are 

allowed to overlap other computation. Similarly, under certain 

circumstances, reads from memory are allowed to be satisfied 

from a local copy of memory, referred to in the OpenMP 2.5 

specification as the thread’s temporary view. Each thread can also 

create thread-private variables that may not be accessed by any 

other thread. 

Every variable used in a parallel region has an original variable by 

the same name outside the parallel region. A reference inside the 

parallel construct to a variable, determined to be shared by the 

parallel directive, is a reference to that variable’s original 

variable. A reference inside the parallel construct to a variable, 

determined to be private by the parallel directive, is a reference to 

a variable of the same type and size as the original variable that is 

private to the thread.

The relaxed consistency of OpenMP memory is similar to weak 

ordering2,3,4 memory consistency, with the OpenMP flush operation 

serving as a memory-synchronization operation. All reads and 

writes are unordered with respect to each other (except those 

that must be ordered due to data-dependence relations or the 

semantics of the base language). However, a read or write of a 

variable is ordered with respect to an OpenMP flush operation for 

that variable.

Figure 1. A write to A in memory may complete as soon as 
point 1, and as late as point 2

1:   A = 1

 . . .

2: flush(A)

The ordering of memory operations with respect to the flush 

operation must be obeyed by both the compiler and the machine. In 

Figure 1 above, the compiler is prohibited from reversing the order 

of the write to A and the flush(A). Similarly, in the execution 

of the program fragment in Figure 1, the value written by the 

assignment statement at point 1 is required to be firmly lodged in 

memory, available to all other threads, before execution is allowed to 

continue past point 2. Future memory operations involving A would 

not be allowed to start until after the flush(A) completes.

The fact that OpenMP allows execution to continue while the 

write to A is still not complete allows the overlap of a memory 

write with computation (the “…” in Figure 1). Further, if a read of A 

occurs within the “…” computation, the OpenMP implementation 

is allowed to satisfy that read out of some cheap local storage, 

the temporary view, without going all the way to memory. The 

asynchronous writes, along with the ability to do cheap reads in 

certain circumstances, makes it possible to hide memory latency 

within an OpenMP program.
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A flush operation must be executed on both the sending and 

receiving threads. Operations must be done in exactly the 

following order:

1.	 The value is written to a variable in memory by the  
sending thread.

2.	The variable is flushed by the sending thread.

3.	The variable is flushed by the receiving thread.

4.	The value is read from the variable by the receiving thread.

A flush operation for all visible variables is implied at all barriers, all 

lock operations, and at entry to and exit from all parallel regions, 

within an OpenMP program. An atomic construct implies a flush 

operation for the location involved, both before and after the 

atomic operation. 

DSM-based OpenMP  
Programming
The relaxed consistency of the OpenMP memory model makes it 

possible to implement a Distributed Shared-Memory (DSM) version 

of OpenMP efficiently. Implementations can hide the latency 

of accesses to remote nodes of a cluster by overlapping writes 

with other computation and by fulfilling reads from local memory 

instead of remote memory in certain circumstances.

Implementing OpenMP with 
Distributed Shared Memory
We have implemented a DSM system, called Cluster OpenMP, for 

supporting OpenMP programs that run on a cluster. The system 

is based on a licensed derivative of the TreadMarks*5 software 

from Rice University. Beginning with version 9.1, the Intel® C++ 

Compiler for Linux and the Intel® Fortran Compiler for Linux are 

available with Cluster OpenMP.

Cluster OpenMP extends OpenMP with one additional directive 

– the sharable directive. The sharable directive identifies 

variables that are referenced by more than one thread. These 

variables are the ones that are managed by the DSM system.

Certain variables are automatically made sharable by the 

compiler, without the need for a sharable directive. Any variable 

that is allocated memory space on the stack in a routine, and 

then is used as a shared variable in a parallel region in that same 

routine, is automatically made sharable by the compiler. In C or 

C++, the same applies to any pass-by-value formal parameter 

used in a shared way in some parallel region inside the routine.

File-scope variables in C and C++ must be declared explicitly 

sharable. Global variables (Fortran) may be made sharable with a 

sharable directive or by a compiler option. Compiler options 

exist to make all COMMON variables, all module variables, and all 

SAVE variables sharable. Call-by-reference in Fortran presents a 

slight complication. If an expression is used as an actual argument at 

a call site, and then the value of the expression is used in a shared 

way somewhere in the call graph, the value of the expression must 

be made sharable. Doing this by hand would involve creating a new 

temporary variable at the call site, assigning the expression to the 

variable, declaring the temporary variable sharable, and passing the 

temporary variable as the actual parameter of the call. A Fortran 

compiler option exists to do all of this automatically for every 

expression used in a call site, regardless of whether the variable is 

actually used in a shared way.

In addition to identifying all sharable variables, all memory 

allocations from the heap (malloc, calloc, etc.), 

need to be scrutinized to determine whether the memory being 

allocated should be sharable or not. If it should be made sharable, 

the memory allocation call must be replaced by a call to the 

sharable memory equivalent (for example, kmp_sharable_
malloc instead of malloc). 

The DSM Mechanism
The task of keeping shared variables consistent across distributed 

nodes is handled by the Cluster OpenMP run-time library. Sharable 

variables are grouped together on certain pages in memory. 

The basic mechanism relies on protecting memory pages with 

an mprotect system call. When a particular page is not fully 

up-to-date, the page is protected against reading and writing. 

Then, when the program reads from the page, a segmentation 

fault occurs, and a SIGSEGV is delivered to the Cluster OpenMP 

software, which requests updates from all nodes that have 

modified the page since it was last brought up-to-date. The 

updates from each modifying node are applied to the page, the 

page protection against reading is removed, and the instruction is 

restarted. This time, the instruction finds the memory accessible, 

and the read completes successfully.  
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The page is still protected against writing, so that the Cluster 

OpenMP software can trap any modification to the page. When 

the next write to the page happens, a segmentation fault occurs 

again and is delivered to Cluster OpenMP. Since the page is being 

modified, Cluster OpenMP first makes a copy of the page (called a 

“twin”), and then removes all protection from the page. The twin 

makes it possible to determine all changes that were made to the 

page after removing all protection. At the next synchronization 

operation, the node will receive notice of all the pages that other 

nodes have modified, causing all of those pages to be protected 

against reading and writing again.

After the twin is made, further reads and writes on the page, prior 

to the next synchronization, happen without engaging the Cluster 

OpenMP software at all. This makes all of these reads and writes 

extremely cheap compared to the cost of those that cause the 

page to be brought up-to-date and cause the twin to be made. 

The higher the ratio of cheap memory accesses to expensive 

memory accesses, the better the program will perform. 

The use of the cheap memory accesses is allowed by the relaxed 

memory consistency of the OpenMP memory model. The local 

memory of a node serves as the temporary view for each thread. 

At each synchronization operation, nodes receive notification 

about which pages have been modified on other nodes, 

invalidating those pages, and causing the next access to those 

pages to be an expensive operation.

Mapping OpenMP to the DSM Mechanism
First, we must define terminology for identifying the threads in 

a Cluster OpenMP program. Each node has a designated master 

thread (the node master thread), with the rest of the threads 

on that node designated as node worker threads. The nodes 

themselves are divided into the home node (where the program 

was launched) and the rest of the nodes (the remote nodes). 

OpenMP barriers are implemented in Cluster OpenMP using a 

two-level structure. A barrier between threads is done within each 

node, then across nodes. The nodes exchange the lists of pages 

each has modified since the last synchronization, causing each 

node to protect the pages modified by other nodes.

OpenMP locks are likewise implemented in a two-level structure. 

Threads compete for a lock both within a node and across nodes. 

It is faster to grant a lock to a thread on the same node than 

it is to grant the lock to a thread on a remote node. However, 

starvation can occur if the lock is always granted on-node first. 

Therefore, the system must strike a balance, by attempting to 

hand off a lock within a node first for a limited number of times, 

then to a thread on another node.

Reductions are implemented as part of the barrier code, and are 

therefore done in two stages – within a node and across nodes. 

An up-call to a routine containing the reduction code is executed 

on each thread as part of the barrier arrival process. 

The flush operation is a critical part of OpenMP. Flush provides 

the synchronization with memory that the OpenMP memory 

consistency mechanism depends upon to make access to shared 

memory possible. Flushes of all visible variables are implied as a part 

of an OpenMP barrier, OpenMP locks, on entry to and exit from a 

critical section, and on entry to and exit from an atomic operation. 

The purpose of the flush is to make modifications to memory by 

any given thread visible to all other threads. For Cluster OpenMP, 

this is equivalent to sending a write notice from a thread that did a 

modification to a thread that needs to see the modification.

Therefore, write notices from all threads are sent to all other threads 

at barriers. Write notices are also sent from a node granting a lock 

to a node receiving the lock, because modifications made to data 

protected by the lock need to be visible to the next thread acquiring 

the lock. Locks are used to implement critical sections and even 

atomic operations, to guarantee the appropriate visibility of sharable 

data modifications when these operations are performed.

The explicit flush directive is implemented similarly by acquiring 

a “flush lock.” This makes the flushed data visible to the other 

threads that do a flush. Cluster OpenMP makes no attempt to 

implement the flush of specific variables, although it would be 

possible to do so by only passing write notices of pages that cover 

the list of variables to be flushed. Therefore, with Cluster OpenMP, 

every flush is a flush of all variables.
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Performance Considerations 
for Cluster OpenMP
The Cost of Memory Operations
As described above, for Cluster OpenMP, some memory operations 

are much more expensive than others. To achieve good 

performance with Cluster OpenMP, the number of accesses to 

unprotected pages must be as high as possible, relative to the 

number of accesses to protected pages. This means that once 

a page is brought up-to-date on a given node, a large number of 

accesses should be made to it before the next synchronization.

In order to accomplish this, a program should have as little 

synchronization as possible, and re-use the data on a given page 

as much as possible. This translates to avoiding fine-grained 

synchronization, such as atomic constructs or locks, and having 

high data locality.

The OpenMP memory model allows individual reads and writes to 

memory to be done in any order, as long as the synchronization 

operations (flushes) are done in a strict order – the same order 

in which they appear in the original user’s program. The lack of 

ordering between reads and writes to memory makes possible 

their concurrent execution, but all flushes in a program must be 

serialized, adding overhead to the program.

Latency to L1: 1-2 cycles

Latency to L2: 5 - 7 cycles

Latency to L3: 12 - 21 cycles

Latency to memory: 180 – 225 cycles

Gigabit Ethernet latency to remote node: ~28000 cycles

InfiniBand* latency to remote node: ~23000 cycles

Figure 2 shows the number of processor cycles required for an 

access to different levels of cache and the latency to access a 

value in the memory of a remote node. This shows that access to 

the memory of a remote node is approximately 100 times slower 

than access to the local memory, and thousands of times slower 

than access to a value in cache. This comparison should drive 

home the point that local, rather than remote, memory should be 

used as much as possible.

RMS Workloads
Obviously, not all applications are suitable for Cluster OpenMP. An 

application with fine-grained synchronization is forced to spend 

a large percentage of its time fetching data from remote nodes 

and paying thousands of times more for memory accesses than 

it would on an SMP. An important consideration for a potential 

user of Cluster OpenMP is whether the prospective application is 

suitable for Cluster OpenMP.

It turns out that an important class of applications is well-

suited to Cluster OpenMP – the class recently referred to as 

RMS workloads6. The “RMS” stands for “recognition, mining, and 

synthesis.” This class of application is typified by large volumes 

of data that must be processed by searching, pattern matching, 

rendering, synthesizing meaning, etc. The volume of data to be 

processed is large and getting larger all the time. This can be video 

data, scientific data, commercial data, etc. The raw data itself 

is essentially read-only. The conclusions being drawn from the 

data are usually much smaller in volume, and would be read/write. 

Access to the data is often unpredictable and irregular.

This set of characteristics works well with Cluster OpenMP. The 

read-only data can flow to the nodes where it is needed, and 

remain there, accessed from the local memory of each node. Any 

given piece of the read-only data may move to multiple nodes and 

be used in parallel. The small volume of read/write data may cause 

expensive memory accesses, but since there are so few compared 

to the number of cheap read accesses, performance can be quite 

good overall. The irregular accesses make it difficult to use an 

explicit messaging system, such as MPI, to program the application.

The performance of RMS workload applications should be 

reasonably good, the applications are relatively easy to write, and 

the application can be run on relatively cheap hardware (a cluster). 

This makes RMS workloads an excellent fit for a system such as 

Cluster OpenMP.

Figure 2. Itanium® processor latency to cache and memory 
compared with messaging latency to remote nodes
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Performance Results
We have run some preliminary performance experiments with 

a set of applications on Cluster OpenMP. The applications came 

from prospective customers, at various companies and academic 

institutions. These applications include:

1.	 a particle-simulation code

2.	a magneto-hydro-dynamics code

3.	a computational fluid dynamics code

4.	a structure-simulation code

5.	a graph-processing code

6.	a linear solver code

7.	 an x-ray crystallography code

We ran all of these experiments on two systems: with OpenMP on 

a 32-processor hardware shared memory machine using Itanium 2 

processors, and with Cluster OpenMP on an Itanium 2 processor-

based cluster.  The processors of all the machines ran at 1.5 GHz with 

a 6-MB L3 cache. We then calculated speedup versus the best serial 

time for each machine and calculated the ratio of the speedups.

Figure 3 shows the raw performance of each, as well as the 

resulting speedup ratios. The significance of these results is 

that certain applications can achieve a large percentage of the 

performance of a hardware shared memory machine on a cluster, 

by using Cluster OpenMP. Five of the seven applications achieved 

at least 70 percent of the performance of the same application on 

a hardware shared memory machine.

Future Work
Future work on the Cluster OpenMP system will involve the use 

of advanced interconnection fabrics. As the DAPL interface is 

implemented on more interconnection fabrics, they will become 

available for use with Cluster OpenMP. The more important impact 

of advanced fabrics, however, is how they will influence the 

algorithms that are used in Cluster OpenMP. 

Performance improvements should become possible by taking 

advantage of some new features of the advanced fabrics, such 

as RDMA (remote direct memory access) and remote atomic 

operations. RDMA should make it possible to directly load DSM 

data structures during messaging, eliminating or greatly reducing 

processor overhead. Remote atomic memory operations should 

make it possible to greatly reduce the performance impact of lock 

acquisition. Today, locks are implemented by sending and receiving 

messages between nodes. Some messages are necessary just 

to find the current owner of a given lock. Remote atomic memory 

operations should make it possible to implement cross-node locks 

with similar algorithms to those used in SMP systems today.

We anticipate redesigning some of the basic DSM algorithms with 

advanced fabrics in mind. We believe that these changes will serve 

to make Cluster OpenMP appropriate for even more applications.
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Conclusion
Cluster OpenMP provides shared memory across a cluster for 

an OpenMP program. It takes advantage of the relaxed memory 

model of OpenMP to optimize the memory accesses in an 

OpenMP program. Cluster OpenMP does not perform well for 

all types of programs, but programs with certain characteristics 

can achieve reasonably good performance on a cluster, 

compared with attainable performance on a hardware shared 

memory machine. We showed performance results for a set of 

applications, showing that most were able to achieve greater 

than 70 percent of the performance of OpenMP programs run on 

a shared memory machine. 
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