
Extending OpenMP*
to Clusters

White Paper
Jay P. Hoeflinger

Senior Staff Software Engineer

Intel Corporation

�

White Paper Extending OpenMP* to Clusters

Table of Contents
Executive Summary ...3

 Introduction ...3

OpenMP* Programming ...3

 The OpenMP Execution Model ..3

 The OpenMP Memory Model ..4

DSM-based OpenMP Programming ..5

Implementing OpenMP with Distributed Shared Memory ..5

 The DSM Mechanism ..5

 Mapping OpenMP to the DSM Mechanism ..6

Performance Considerations for Cluster OpenMP ..7

 The Cost of Memory Operations ...7

 RMS Workloads ..7

Performance Results ..8

Future Work ...8

Conclusion ..9

References ...9

�

Extending OpenMP* to Clusters White Paper

Executive Summary
OpenMP* is a well-known parallel programming paradigm for shared-memory multiprocessors. In the past,
OpenMP has been confined to Symmetric Multi-Processing (SMP) machines and teamed with Message Passing
Interface (MPI) technology to make use of multiple SMP systems. A new system, Cluster OpenMP*, is an
implementation of OpenMP that can make use of multiple SMP machines without resorting to MPI. This advance
has the advantage of eliminating the need to write explicit messaging code, as well as not mixing programming
paradigms. The shared memory in Cluster OpenMP is maintained across all machines through a distributed
shared-memory subsystem. Cluster OpenMP is based on the relaxed memory consistency of OpenMP, allowing
shared variables to be made consistent only when absolutely necessary.

Introduction
It is generally agreed that shared-memory parallel programming

leads to lower program-development costs than parallel

programming by message-passing. The advantage of being

able to access data without thinking about whether it must be

fetched first is a significant one, relieving the programmer of a

level of complexity. Further, complicated data structures in modern

algorithms often lead to irregular and rapidly changing patterns of

data access, making it even more difficult to write an MPI program

using them.

The OpenMP parallel programming language1 has a further

advantage over other shared-memory programming languages,

because it is a directive language embedded in a serial program

written in a base language (currently the base languages are C,

C++, and Fortran), giving the programmer a clear way to retain the

serial program intact. It is possible to build an OpenMP program

that can be run and debugged serially, nicely partitioning serial

program issues from parallel ones.

One problem with OpenMP and other shared-memory

programming languages is that programs using these languages

have been confined to run on a single multiprocessor machine,

and if a large number of processors is desired, that machine can

be very expensive. Bus-based multiprocessors don’t scale well

beyond about four processors. Machines supporting more than

four processors typically have employed more sophisticated (and

expensive) interconnects. The need for an expensive machine has

limited the penetration of OpenMP in many markets. Message-

passing programs have been successful on large clusters, because

cheap interconnects have made them much less expensive than

a shared-memory machine of the same processor count, and the

largest clusters simply have no shared-memory counterpart.

A new software system from Intel has the potential to change

the dynamics of this situation. Cluster OpenMP has extended the

OpenMP programming language to make it usable on clusters.

This change combines the advantages of the easier programming

model with the advantage of usability on cheaper hardware.

Cluster OpenMP currently runs on Itanium®-based platforms

and on systems based on processors that support Intel® EM64T

running Linux*, with support for sockets and the uDAPL verb API.7

Cluster OpenMP has been tested on Ethernet and Infiniband*

interconnects, although other interconnects will be supported in

the future.

In this paper, we point out key aspects of OpenMP, and then

describe how Cluster OpenMP takes advantage of the OpenMP

relaxed-memory model to hide communication latency. We describe

how various OpenMP operations are implemented by Cluster

OpenMP, as well as discuss performance considerations in a Cluster

OpenMP program and show some performance results. Finally, we

touch upon future plans for the Cluster OpenMP software.

OpenMP Programming
The OpenMP Execution Model
An OpenMP program executes according to a fork-join model.

This means that an OpenMP program begins execution as a

single thread, called the master thread, and when a parallel

directive is encountered by that thread, execution forks and

the parallel region is executed by a team of threads. When the

parallel region is finished, the threads in the team join again

at an implicit barrier, and the master thread is the only thread that

continues execution.

�

White Paper Extending OpenMP* to Clusters

This fork-join structure continues in a nested way, if necessary.

If a parallel region is currently active and any thread in the team

that is executing the parallel region encounters another parallel

directive, execution forks again, another team of threads is

formed, and those threads execute the new parallel region, then

join at its end.

OpenMP provides a menu of synchronization constructs: critical

sections for mutual exclusion, barriers to hold threads until all in a

given team have arrived, atomic constructs to confer atomicity on

individual operations, reduction operations, and a way of ordering

code sections within a parallel loop. These synchronization

operations make it possible to implement most of the desired

forms of cooperation between threads.

The OpenMP Memory Model
OpenMP provides memory that is shared by all threads. Each

thread reads and writes the shared memory directly, but the

memory consistency is relaxed, in that writes to memory are

allowed to overlap other computation. Similarly, under certain

circumstances, reads from memory are allowed to be satisfied

from a local copy of memory, referred to in the OpenMP 2.5

specification as the thread’s temporary view. Each thread can also

create thread-private variables that may not be accessed by any

other thread.

Every variable used in a parallel region has an original variable by

the same name outside the parallel region. A reference inside the

parallel construct to a variable, determined to be shared by the

parallel directive, is a reference to that variable’s original

variable. A reference inside the parallel construct to a variable,

determined to be private by the parallel directive, is a reference to

a variable of the same type and size as the original variable that is

private to the thread.

The relaxed consistency of OpenMP memory is similar to weak

ordering2,3,4 memory consistency, with the OpenMP flush operation

serving as a memory-synchronization operation. All reads and

writes are unordered with respect to each other (except those

that must be ordered due to data-dependence relations or the

semantics of the base language). However, a read or write of a

variable is ordered with respect to an OpenMP flush operation for

that variable.

Figure 1. A write to A in memory may complete as soon as
point 1, and as late as point 2

1: A = 1

 . . .

2: flush(A)

The ordering of memory operations with respect to the flush

operation must be obeyed by both the compiler and the machine. In

Figure 1 above, the compiler is prohibited from reversing the order

of the write to A and the flush(A). Similarly, in the execution

of the program fragment in Figure 1, the value written by the

assignment statement at point 1 is required to be firmly lodged in

memory, available to all other threads, before execution is allowed to

continue past point 2. Future memory operations involving A would

not be allowed to start until after the flush(A) completes.

The fact that OpenMP allows execution to continue while the

write to A is still not complete allows the overlap of a memory

write with computation (the “…” in Figure 1). Further, if a read of A

occurs within the “…” computation, the OpenMP implementation

is allowed to satisfy that read out of some cheap local storage,

the temporary view, without going all the way to memory. The

asynchronous writes, along with the ability to do cheap reads in

certain circumstances, makes it possible to hide memory latency

within an OpenMP program.

�

Extending OpenMP* to Clusters White Paper

A flush operation must be executed on both the sending and

receiving threads. Operations must be done in exactly the

following order:

1.	 The value is written to a variable in memory by the
sending thread.

2.	The variable is flushed by the sending thread.

3.	The variable is flushed by the receiving thread.

4.	The value is read from the variable by the receiving thread.

A flush operation for all visible variables is implied at all barriers, all

lock operations, and at entry to and exit from all parallel regions,

within an OpenMP program. An atomic construct implies a flush

operation for the location involved, both before and after the

atomic operation.

DSM-based OpenMP
Programming
The relaxed consistency of the OpenMP memory model makes it

possible to implement a Distributed Shared-Memory (DSM) version

of OpenMP efficiently. Implementations can hide the latency

of accesses to remote nodes of a cluster by overlapping writes

with other computation and by fulfilling reads from local memory

instead of remote memory in certain circumstances.

Implementing OpenMP with
Distributed Shared Memory
We have implemented a DSM system, called Cluster OpenMP, for

supporting OpenMP programs that run on a cluster. The system

is based on a licensed derivative of the TreadMarks*5 software

from Rice University. Beginning with version 9.1, the Intel® C++

Compiler for Linux and the Intel® Fortran Compiler for Linux are

available with Cluster OpenMP.

Cluster OpenMP extends OpenMP with one additional directive

– the sharable directive. The sharable directive identifies

variables that are referenced by more than one thread. These

variables are the ones that are managed by the DSM system.

Certain variables are automatically made sharable by the

compiler, without the need for a sharable directive. Any variable

that is allocated memory space on the stack in a routine, and

then is used as a shared variable in a parallel region in that same

routine, is automatically made sharable by the compiler. In C or

C++, the same applies to any pass-by-value formal parameter

used in a shared way in some parallel region inside the routine.

File-scope variables in C and C++ must be declared explicitly

sharable. Global variables (Fortran) may be made sharable with a

sharable directive or by a compiler option. Compiler options

exist to make all COMMON variables, all module variables, and all

SAVE variables sharable. Call-by-reference in Fortran presents a

slight complication. If an expression is used as an actual argument at

a call site, and then the value of the expression is used in a shared

way somewhere in the call graph, the value of the expression must

be made sharable. Doing this by hand would involve creating a new

temporary variable at the call site, assigning the expression to the

variable, declaring the temporary variable sharable, and passing the

temporary variable as the actual parameter of the call. A Fortran

compiler option exists to do all of this automatically for every

expression used in a call site, regardless of whether the variable is

actually used in a shared way.

In addition to identifying all sharable variables, all memory

allocations from the heap (malloc, calloc, etc.),

need to be scrutinized to determine whether the memory being

allocated should be sharable or not. If it should be made sharable,

the memory allocation call must be replaced by a call to the

sharable memory equivalent (for example, kmp_sharable_
malloc instead of malloc).

The DSM Mechanism
The task of keeping shared variables consistent across distributed

nodes is handled by the Cluster OpenMP run-time library. Sharable

variables are grouped together on certain pages in memory.

The basic mechanism relies on protecting memory pages with

an mprotect system call. When a particular page is not fully

up-to-date, the page is protected against reading and writing.

Then, when the program reads from the page, a segmentation

fault occurs, and a SIGSEGV is delivered to the Cluster OpenMP

software, which requests updates from all nodes that have

modified the page since it was last brought up-to-date. The

updates from each modifying node are applied to the page, the

page protection against reading is removed, and the instruction is

restarted. This time, the instruction finds the memory accessible,

and the read completes successfully.

�

White Paper Extending OpenMP* to Clusters

The page is still protected against writing, so that the Cluster

OpenMP software can trap any modification to the page. When

the next write to the page happens, a segmentation fault occurs

again and is delivered to Cluster OpenMP. Since the page is being

modified, Cluster OpenMP first makes a copy of the page (called a

“twin”), and then removes all protection from the page. The twin

makes it possible to determine all changes that were made to the

page after removing all protection. At the next synchronization

operation, the node will receive notice of all the pages that other

nodes have modified, causing all of those pages to be protected

against reading and writing again.

After the twin is made, further reads and writes on the page, prior

to the next synchronization, happen without engaging the Cluster

OpenMP software at all. This makes all of these reads and writes

extremely cheap compared to the cost of those that cause the

page to be brought up-to-date and cause the twin to be made.

The higher the ratio of cheap memory accesses to expensive

memory accesses, the better the program will perform.

The use of the cheap memory accesses is allowed by the relaxed

memory consistency of the OpenMP memory model. The local

memory of a node serves as the temporary view for each thread.

At each synchronization operation, nodes receive notification

about which pages have been modified on other nodes,

invalidating those pages, and causing the next access to those

pages to be an expensive operation.

Mapping OpenMP to the DSM Mechanism
First, we must define terminology for identifying the threads in

a Cluster OpenMP program. Each node has a designated master

thread (the node master thread), with the rest of the threads

on that node designated as node worker threads. The nodes

themselves are divided into the home node (where the program

was launched) and the rest of the nodes (the remote nodes).

OpenMP barriers are implemented in Cluster OpenMP using a

two-level structure. A barrier between threads is done within each

node, then across nodes. The nodes exchange the lists of pages

each has modified since the last synchronization, causing each

node to protect the pages modified by other nodes.

OpenMP locks are likewise implemented in a two-level structure.

Threads compete for a lock both within a node and across nodes.

It is faster to grant a lock to a thread on the same node than

it is to grant the lock to a thread on a remote node. However,

starvation can occur if the lock is always granted on-node first.

Therefore, the system must strike a balance, by attempting to

hand off a lock within a node first for a limited number of times,

then to a thread on another node.

Reductions are implemented as part of the barrier code, and are

therefore done in two stages – within a node and across nodes.

An up-call to a routine containing the reduction code is executed

on each thread as part of the barrier arrival process.

The flush operation is a critical part of OpenMP. Flush provides

the synchronization with memory that the OpenMP memory

consistency mechanism depends upon to make access to shared

memory possible. Flushes of all visible variables are implied as a part

of an OpenMP barrier, OpenMP locks, on entry to and exit from a

critical section, and on entry to and exit from an atomic operation.

The purpose of the flush is to make modifications to memory by

any given thread visible to all other threads. For Cluster OpenMP,

this is equivalent to sending a write notice from a thread that did a

modification to a thread that needs to see the modification.

Therefore, write notices from all threads are sent to all other threads

at barriers. Write notices are also sent from a node granting a lock

to a node receiving the lock, because modifications made to data

protected by the lock need to be visible to the next thread acquiring

the lock. Locks are used to implement critical sections and even

atomic operations, to guarantee the appropriate visibility of sharable

data modifications when these operations are performed.

The explicit flush directive is implemented similarly by acquiring

a “flush lock.” This makes the flushed data visible to the other

threads that do a flush. Cluster OpenMP makes no attempt to

implement the flush of specific variables, although it would be

possible to do so by only passing write notices of pages that cover

the list of variables to be flushed. Therefore, with Cluster OpenMP,

every flush is a flush of all variables.

�

Extending OpenMP* to Clusters White Paper

Performance Considerations
for Cluster OpenMP
The Cost of Memory Operations
As described above, for Cluster OpenMP, some memory operations

are much more expensive than others. To achieve good

performance with Cluster OpenMP, the number of accesses to

unprotected pages must be as high as possible, relative to the

number of accesses to protected pages. This means that once

a page is brought up-to-date on a given node, a large number of

accesses should be made to it before the next synchronization.

In order to accomplish this, a program should have as little

synchronization as possible, and re-use the data on a given page

as much as possible. This translates to avoiding fine-grained

synchronization, such as atomic constructs or locks, and having

high data locality.

The OpenMP memory model allows individual reads and writes to

memory to be done in any order, as long as the synchronization

operations (flushes) are done in a strict order – the same order

in which they appear in the original user’s program. The lack of

ordering between reads and writes to memory makes possible

their concurrent execution, but all flushes in a program must be

serialized, adding overhead to the program.

Latency to L1: 1-2 cycles

Latency to L2: 5 - 7 cycles

Latency to L3: 12 - 21 cycles

Latency to memory: 180 – 225 cycles

Gigabit Ethernet latency to remote node: ~28000 cycles

InfiniBand* latency to remote node: ~23000 cycles

Figure 2 shows the number of processor cycles required for an

access to different levels of cache and the latency to access a

value in the memory of a remote node. This shows that access to

the memory of a remote node is approximately 100 times slower

than access to the local memory, and thousands of times slower

than access to a value in cache. This comparison should drive

home the point that local, rather than remote, memory should be

used as much as possible.

RMS Workloads
Obviously, not all applications are suitable for Cluster OpenMP. An

application with fine-grained synchronization is forced to spend

a large percentage of its time fetching data from remote nodes

and paying thousands of times more for memory accesses than

it would on an SMP. An important consideration for a potential

user of Cluster OpenMP is whether the prospective application is

suitable for Cluster OpenMP.

It turns out that an important class of applications is well-

suited to Cluster OpenMP – the class recently referred to as

RMS workloads6. The “RMS” stands for “recognition, mining, and

synthesis.” This class of application is typified by large volumes

of data that must be processed by searching, pattern matching,

rendering, synthesizing meaning, etc. The volume of data to be

processed is large and getting larger all the time. This can be video

data, scientific data, commercial data, etc. The raw data itself

is essentially read-only. The conclusions being drawn from the

data are usually much smaller in volume, and would be read/write.

Access to the data is often unpredictable and irregular.

This set of characteristics works well with Cluster OpenMP. The

read-only data can flow to the nodes where it is needed, and

remain there, accessed from the local memory of each node. Any

given piece of the read-only data may move to multiple nodes and

be used in parallel. The small volume of read/write data may cause

expensive memory accesses, but since there are so few compared

to the number of cheap read accesses, performance can be quite

good overall. The irregular accesses make it difficult to use an

explicit messaging system, such as MPI, to program the application.

The performance of RMS workload applications should be

reasonably good, the applications are relatively easy to write, and

the application can be run on relatively cheap hardware (a cluster).

This makes RMS workloads an excellent fit for a system such as

Cluster OpenMP.

Figure 2. Itanium® processor latency to cache and memory
compared with messaging latency to remote nodes

�

White Paper Extending OpenMP* to Clusters

Performance Results
We have run some preliminary performance experiments with

a set of applications on Cluster OpenMP. The applications came

from prospective customers, at various companies and academic

institutions. These applications include:

1.	 a particle-simulation code

2.	a magneto-hydro-dynamics code

3.	a computational fluid dynamics code

4.	a structure-simulation code

5.	a graph-processing code

6.	a linear solver code

7.	 an x-ray crystallography code

We ran all of these experiments on two systems: with OpenMP on

a 32-processor hardware shared memory machine using Itanium 2

processors, and with Cluster OpenMP on an Itanium 2 processor-

based cluster. The processors of all the machines ran at 1.5 GHz with

a 6-MB L3 cache. We then calculated speedup versus the best serial

time for each machine and calculated the ratio of the speedups.

Figure 3 shows the raw performance of each, as well as the

resulting speedup ratios. The significance of these results is

that certain applications can achieve a large percentage of the

performance of a hardware shared memory machine on a cluster,

by using Cluster OpenMP. Five of the seven applications achieved

at least 70 percent of the performance of the same application on

a hardware shared memory machine.

Future Work
Future work on the Cluster OpenMP system will involve the use

of advanced interconnection fabrics. As the DAPL interface is

implemented on more interconnection fabrics, they will become

available for use with Cluster OpenMP. The more important impact

of advanced fabrics, however, is how they will influence the

algorithms that are used in Cluster OpenMP.

Performance improvements should become possible by taking

advantage of some new features of the advanced fabrics, such

as RDMA (remote direct memory access) and remote atomic

operations. RDMA should make it possible to directly load DSM

data structures during messaging, eliminating or greatly reducing

processor overhead. Remote atomic memory operations should

make it possible to greatly reduce the performance impact of lock

acquisition. Today, locks are implemented by sending and receiving

messages between nodes. Some messages are necessary just

to find the current owner of a given lock. Remote atomic memory

operations should make it possible to implement cross-node locks

with similar algorithms to those used in SMP systems today.

We anticipate redesigning some of the basic DSM algorithms with

advanced fabrics in mind. We believe that these changes will serve

to make Cluster OpenMP appropriate for even more applications.

14

12

10

8

6

4

2

0

140

120

100

80

60

40

20

0

Pe
rc

en
ta

ge

Sp
ee

du
p

Pa
rt

ic
le

 S
im

m
 h

d

st
ru

ct
ur

e

gr
ap

h

cr
ys

ta
llo

g

Cluster OMP % of Open MP
with speedups 16 procs

CLOMP % of OMP

OMP speedup

CLOMP speedup

cf
d

Figure 3. Raw speedup of Cluster OpenMP on a cluster
and OpenMP on a hardware shared memory machine, plus
speedup percentage of Cluster OpenMP versus OpenMP for
a set of codes.

�

Extending OpenMP* to Clusters White Paper

Conclusion
Cluster OpenMP provides shared memory across a cluster for

an OpenMP program. It takes advantage of the relaxed memory

model of OpenMP to optimize the memory accesses in an

OpenMP program. Cluster OpenMP does not perform well for

all types of programs, but programs with certain characteristics

can achieve reasonably good performance on a cluster,

compared with attainable performance on a hardware shared

memory machine. We showed performance results for a set of

applications, showing that most were able to achieve greater

than 70 percent of the performance of OpenMP programs run on

a shared memory machine.

References
1.	 OpenMP Architecture Review Board: OpenMP Application

Program Interface, Version 2.5. OpenMP Architecture Review
Board (2005)

2.	Adve, S.V., Gharachorloo, K. Shared Memory Consistency
Models: A Tutorial, IEEE Computer, Vol. 29, No. 12, pp 66-76,
1996 (Also: WRL Research Report 95/7, Digital Western
Research Laboratory, Palo Alto, California, 1995).

3.	Hennessy, J.L., Patterson, D.A. Computer Architecture A
Quantitative Approach, Second Edition, Morgan Kaufman
Publishers, Inc, San Francisco, California, 1996.

4.	Adve, S.V., Hill, M.D. Weak Ordering – A New Definition. In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 2-14, May 1990.

5.	P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems, Proceedings of the
Winter 94 Usenix Conference, pp. 115-131, January 1994.

6.	http://www.intel.com/technology/computing/archinnov/teraera/

7.	 http://www.datcollaborative.org/udapl.html#spec
uDAPL:User Direct Access Programming Library.

http://www.intel.com/research/platform/terascale/index.htm
http://www.datcollaborative.org/udapl.html#spec

Intel, the Intel logo, Intel. Leap ahead. and Intel. Leap ahead. logo, Pentium, Intel Core, and Itanium are trademarks or registered

trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED

IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL

DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY

OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life

sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright © 2006, Intel Corporation. All Rights Reserved.

0506/DAM/ITF/PP/500 312568-001

For product and purchase information visit:
www.intel.com/software/products

www.intel.com/software/products

