
Extending Xen* with Intel® Virtualization Technology

Intel® Virtualization Technology

Intel®

Technology
Journal

Volume 10 Issue 03 Published, August 10, 2006 ISSN 1535-864X DOI: 10.1535/itj.1003

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 193

Extending Xen* with Intel® Virtualization Technology

Yaozu Dong, Core Software Division, Intel Corporation
Shaofan Li, Core Software Division, Intel Corporation

Asit Mallick, Core Software Division, Intel Corporation
Jun Nakajima, Core Software Division, Intel Corporation

Kun Tian, Core Software Division, Intel Corporation
Xuefei Xu, Core Software Division, Intel Corporation
Fred Yang, Core Software Division, Intel Corporation
Wilfred Yu, Core Software Division, Intel Corporation

Index words: Xen, Virtualization, Hypervisor, Intel® VT, virtual machine monitor

ABSTRACT

Xen* is an open source virtual machine monitor (VMM)
developed at the University of Cambridge to support
operating systems (OSs) that have been modified to run
on top of the monitor. Intel has extended the Xen VMM
to use Intel® Virtualization TechnologyΔ (VT) to support
unmodified guest OSs also. This was done for IA-32
Intel® Architecture processors as well as Itanium®
architecture processors.

In this paper we describe the changes that have been
made to Xen to enable this support. We also highlight
the optimizations that have been made to date to deliver
good virtualized performance.

INTRODUCTION
Xen is an open source virtual machine monitor (VMM)
that allows the hardware resources of a machine to be
virtualized and dynamically shared between OSs running
on top of it [1]. Each virtual machine (VM) is called a
Domain, in Xen terminology. Xen provides isolated
execution for each domain, preventing failures or
malicious activities in one domain from impacting
another domain. The Xen hypervisor and Domain0
(Dom0) are a required part of any Xen-based server.
Multiple user domains, called DomainU in Xen
terminology, can be created to run guest OSs.

Unlike the full virtualization solutions offered by the
IBM VM/370*, or VMware’s ESX* and Microsoft’s
Virtual PC product*, Xen began life as a VMM for guest
OSs that have been modified to run on the Xen
hypervisor. User applications within these OSs run as is,
i.e., unmodified. This technique is called

“paravirtualization,” and it delivers near native
performance for the guest OS, only if the guest OSs
source code can be modified.

Xen versions 1.0 and 2.0 use paravirtualization
techniques to support 32-bit platforms and Linux* guests.
They use the standard IA-32 protection and
segmentation architecture for system resource
virtualization. The hypervisor runs in the highest
privilege level ring 0 and has full access to all memory
on the system. Guest OSs use privilege levels 1, 2, and 3
as they see fit. Segmentation is used to prevent the guest
OS from accessing the Xen address space.

Xen 3.0 is the first open-source VMM that uses Intel
Virtualization Technology (VT) to support unmodified
guest OSs as well as paravirtualized guest OSs. Xen 3.0
also added support for 64-bit platforms and 64-bit guests
[9]. Page-level protection is used to protect the 64-bit
hypervisor from the guest.

In this paper, we begin with a brief overview of Intel VT
and then we explain how we extended Xen to take
advantage of VT. We highlight key virtualization issues
for IA-32, Intel® EM64TΦ, and Itanium processors and
explain how they are addressed in Xen 3.0. Finally, we
highlight some of the changes that have been made to the
hypervisor and the device models to improve
performance.

INTEL® VIRTUALIZATION
TECHNOLOGY
Intel VT is a collection of processor technologies that
enables robust execution of unmodified guest OSs on
Intel VT-enhanced VMMs [2]. VT-x defines the

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 194

extensions to the IA-32 Intel Architecture [3]. VT-i
defines the extensions to the Intel Itanium architecture
[4].

VT-x augments IA-32 with two new forms of CPU
operation: virtual machine extensions (VMX) root
operations and VMX non-root operations. The transition
from VMX root operation to VMX non-root operation is
called a VM entry. The transition from a VMX non-root
operation to VMX root operation is called a VM exit.

A virtual-machine control structure (VMCS) is defined
to manage VM entries and exits, and it controls the
behavior of instructions in a non-root operation. The
VMCS is logically divided into sections, two of which
are the guest-state area and the host-state area. These
areas contain fields corresponding to different
components of processor state. VM entries load
processor state from the guest-state area. VM exits save
processor state to the guest-state area and then load
processor state from the host-state area.

The VMM runs in root operation while the guests run in
VMX non-root operation. Both forms of operation
support all four privilege levels (i.e., rings 0, 1, 2, and
3). The VM-execution control fields in the VMCS allow
the VMM to control the behavior of some instructions in
VMX non-root operation and the events that will cause
VM exits. Instructions like CPUID, MOV from CR3,
RDMSR, and WRMSR will trigger VM exits
unconditionally to allow the VMM to control the
behavior of the guest.

VT-i expands the Itanium processor family (IPF) to
enable robust execution of VMs. A new processor status
register bit (PSR.vm) has been added to define a new
operating mode for the processor. The VMM runs with
this bit cleared while the guest OS runs with it set.
Privileged instructions, including non-privileged
instructions like thash, ttag and mov cupid that may
reveal the true operating state of the processor, trigger
virtualization faults when operating in this mode.

The PSR.vm bit also controls the number of virtual-
address bits that are available to software. When a VMM
is running with PSR.vm = 0, all implemented virtual-

address bits are available. When the guest OS is running
with PSR.vm = 1, the uppermost implemented virtual-
address bit is made unavailable to the guest. Instruction
or data fetches with any of these address bits set will
trigger unimplemented data/instruction address faults or
unimplemented instruction address traps. This provides
the VMM a dedicated address space that guest software
cannot access.

VT-i also defines the processor abstraction layer (PAL)
interfaces that can be used by the VMM to create and
manage VMs. A Virtual Processor Descriptor (VPD) is
defined to represent the resources of a virtual processor.
PAL procedures are defined to allow the VMM to
configure logical processors for virtualization operations
and to suspend or resume virtual processors. PAL run-
time services are defined to support performance-critical
VMM operations.

EXTENDING XEN* WITH INTEL VT
Xen 3.0 architecture (Figure 1) has a small hypervisor
kernel that deals with virtualizing the CPU, memory, and
critical I/O resources, such as the interrupt controller.
Dom0 is a paravirtualized Linux that has privileged
access to all I/O devices in the platform and is an
integral part of any Xen-based system. Xen 3.0 also
includes a control panel that controls the sharing of the
processor, memory, network, and block devices. Access
to the control interface is limited to Dom0. Multiple user
domains, called DomainU (DomU) can be created to run
paravirtualized guest OSs. Dom0 and DomU OSs use
hypercalls to request services from the Xen hypervisor.

When Intel VT is used, fully virtualized domains can be
created to run unmodified guest OSs. These fully
virtualized domains are given the special name of HVMs
(hardware-based virtual machines). Xen presents to each
HVM guest a virtualized platform that resembles a
classic PC/server platform with a keyboard, mouse,
graphics display, disk, floppy, CD-ROM, etc. This
virtualized platform support is provided by the Virtual
I/O Devices module.

In the following sections we describe the extensions to
each of these Xen components.

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 195

Figure 1: Xen 3.0 architecture

Control Panel
We have extended the control panel to support creating,
controlling, and destroying HVM domains. The user can
specify configuration parameters such as the guest
memory map and size, the virtualized disk location,
network configuration, etc.

The control panel loads the guest firmware into the
HVM domain and creates the device model thread
(explained later) that will run in Dom0 to service
input/output (I/O) requests from the HVM guest. The
control panel also configures the virtual devices seen by
the HVM guest, such as the interrupt binding and the
PCI configuration.

The HVM guest is then started, and control is passed to
the first instruction in the guest firmware. The HVM
guest executes at native speed until it encounters an
event that requires special handling by Xen.

Guest Firmware
The guest firmware (BIOS) provides the boot services
and run-time services required by the OS in the HVM.
This guest firmware does not see any real physical
devices. It operates on the virtual devices provided by
the device models.

For VT-x, we are re-using the open source Bochs BIOS
[5]. We extended the Bochs BIOS by adding Multi-
Processor Specification (MPS) tables [6], Advanced
Configuration and Power Interface (ACPI) tables [7],
including the Multiple APIC Description Table

(MADT). The BIOS and the early OS loader expect to
run in real mode. To create the environment needed by
these codes, we use VMXAssist to configure the VT-x
guest to execute in virtual-8086 mode. Instructions that
cannot be executed in this mode are intercepted and
emulated with a software emulator.

For VT-i, we developed a guest firmware using the
Intel® Platform Innovation Framework for Extensible
Firmware Interface (EFI). This guest firmware provides
all EFI boot services required by IPF guest OSs. It is
compatible with the Developer’s Interface Guide for 64-
bit Intel® Architecture-based Servers (DIG64) and
provides the System Abstraction Layer (SAL), ACPI 2.0,
and EFI 1.10 tables required by IPF guest OSs.

Processor Virtualization
The Virtual CPU module in Xen provides the abstraction
of a processor to the HVM guest. It manages the virtual
processor(s) and associated virtualization events when
the guest OS is executing. It saves the physical processor
state when the guest gives up a physical CPU, and
restores the guest state when it is rescheduled to run on a
physical processor.

For the IA-32 architecture, a VMCS structure is created
for each CPU in a HVM domain (Figure 2). The
execution control of the CPU in VMX mode is
configured as follows:

• Instructions such as CPUID, MOV from/to CR3,
MOV to CR0/CR4, RDMSR, WRMSR, HLT,

Xen Hypervisor

N

ative
D

evice
D

rivers

B
ackend

V
irtual

driver

App

F
ront end

 V

irtual

 D
rivers

App

HVM (Hardware Virtual Machine)
Domain

Unmodified OS

Virtual Platform

Guest BIOS

F
E

 V
irtual

D
rivers

App App

V
irtual I/O

D

evices

C
ontrol
P

anel

Platform with Hardware-Based Virtualization (e.g. Intel® Virtualization Technology on IA-32, EM64T, IPF, aka IA-64)

Xenlinux Xenlinux

Virtual MMU

Virtual I/O Devices
Local IO APIC, PIT

Virtual CPU

Domain0: Para-Virtualization
Domain

App

VM Exit/Entry Hypercall/Event

DomainU: Para-Virtualization
Domain

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 196

INVLPG, MOV from CR8, MOV DR, and MWAIT
are intercepted as VM exits.

• Exceptions/faults, such as page fault, are intercepted
as VM exits, and virtualized exceptions/faults are
injected on VM entry to guests.

• External interrupts unrelated to guests are
intercepted as VM exits, and virtualized interrupts
are injected on VM entry to the guests.

• Read shadows are created for the guest CR0, CR4,
and time stamp counter (TSC). Read accesses to
such registers will not cause VM exit, but will return
the shadow values.

Figure 2: VMCS

For the Itanium architecture, a Virtual Processor Block
(VPD) structure is created for each CPU in a HVM
domain. The VPD has similar functionality as the VMCS
in the IA-32 architecture. The virtualization control of
the CPU is configured as follows:

• Instructions such as MOV from/to RR, MOV
from/to CR, ITC/PTC, ITR/PTR, MOV from/to
PKR, MOV from/to IBR/DBR are intercepted as
virtualization faults.

• Instructions such as COVER, BSW are optimized to
execute without virtualization faults.

• Exceptions/faults are intercepted by the VMM, and
virtualized exceptions/faults are injected to the guest
on a VM resume.

• External interrupts are intercepted by the VMM, and
virtualized external interrupts are injected to the
guest using the virtual external interrupt
optimization.

• Read shadows are created for the guest interruption
control registers, PSR, CPUID. Read accesses to
such registers will not cause virtualization fault, but
will return the shadow values.

• Write shadows are created for the guest interruption
control registers. Write accesses to such registers
will not cause virtualization fault, but will write to
the shadow values.

An interesting question when designing Xen concerns
the processor features that are exposed to HVM guests.
Some VMMs present only a generic, minimally featured
processor to the guest. This allows the guest to migrate
easily to arbitrary platforms, but precludes the guest
from using new instructions or processor features that
may exist in the processor. For Xen, we are exporting
most CPUID bits to the guest. We clearly need to clear
the VMX bit [Leaf 1, ECX:5], or else the guest may
bring up another level of virtualization. Other bits to be
cleared include machine check architecture (MCA),
because MCA issues are handled by the hypervisor.
Today’s OSs also use model-specific registers to detect
the microcode version on the processor and to decide
whether they need to perform a microcode update. For
Xen, we decided to fake the update request, i.e., bump
the microcode version number without changing the
microcode itself.

Memory Virtualization
The virtual Memory Management Unit (MMU) module
in the Xen hypervisor presents the abstraction of a
hardware MMU to the HVM domain. HVM guests see
guest physical addresses (GPAs), and this module
translates GPAs to the appropriate machine physical
addresses (MPAs).

IA-32 Memory Virtualization
The virtual MMU module supports all page table
formats that can be used by the guest OS.

• For IA-32

a. it supports 2-level page tables with 4 KB
page size for 32-bit guests.

• For IA-32 Physical Address Extension (PAE)

a. it supports 2-level page tables with 4 KB
page sizes for 32-bit guests.

b. it supports 3-level page tables with 4 KB
and 2 MB page sizes for 32-bit PAE
guests.

• For Intel EM64T

a. it supports 2-level page tables with 4 KB
page size for 32-bit guests.

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 197

b. it supports 3-level page tables with 4 KB
and 2 MB page sizes for 32-bit PAE
guests.

c. it supports 4-level page tables with 4 KB
and 2 MB page sizes for 64-bit guests.

For the IA-32 architecture, this module maintains a
shadow page table for the guest (Figure 3). This is the
actual page table used by the processor during VMX
operation, containing page table entries (PTEs) with
machine page-frame numbers. Every time the guest
modifies its page mapping, either by changing the
content of a translation, creating a new translation, or
removing an existing translation, the virtual MMU
module will capture the modification and adjust the
shadow page tables accordingly. Since Xen already has
shadow page table code for paravirtualized guests, we
extended the code to support fully virtualization guests.
The resultant code handles paravirtualized and
unmodified guests in a unified fashion.

Figure 3: Shadow page table

From a performance point of view, the shadow page
table code is the most critical for overall performance.
The most rudimentary implementation includes the
construction of shadow page tables from scratch every
time the guest updates CR3 to request a TLB flush. This,
however, will incur significant overhead. If we can tell
which guest page table entries have been modified, we
just need to clean up the affected shadow entries,
allowing the existing shadow page tables to be reused.

The following algorithm is used to optimize shadow
page table management:

• When allocating a shadow page upon page fault
from the guest, write protect the corresponding
guest page table page. This allows you to detect any
attempt to modify the guest page table. For this to
work, you need to find all translations that map the
guest page table page. There are several
optimizations for this as discussed below.

• Upon page fault against a guest page table page,
save a “snapshot” of the page and give write
permission to the page. The page is then added to an
“out of sync” list with the information on such an
attempt (i.e., which address, etc.). Now the guest
can continue to update the page.

• When the guest executes an operation that results in
the flush TLB operation, reflect all the entries on the
“out of sync list” to the shadow page table. By
comparing the snapshot and the current page in the
guest page table, you can update the shadow page
table efficiently by checking if the page frame
numbers in the guest page tables are valid (i.e.,
contained in the domain).

Itanium Processor Architecture Memory
Virtualization

Figure 4: IPF TLB virtualization

The Itanium processor architecture defines Translation
Register (TR) entries that can be used to statically map a
range of virtual addresses to physical addresses.
Translation Cache (TC) entries are used for dynamic
mappings. Address translation entries can reside in either
the TLB or in a Virtual Hash Page Table (VHPT). On a
TLB miss, a hardware engine will walk the VHPT to
extract the translation entry for the referenced address
and insert the translation into the TLB.

Figure 4 illustrates the TLB virtualization logic in Xen.
We extended the Xen hypervisor to capture all TLB

PDE.gfn

PTE:gfn

PDE:mfn

Guest View

Xen Hypervisor

Guest Page Table

Shadow Page Table

Page Directory

Page Table

Page Directory

Page Table

CR3

Virtual

gfn: Guest Page Frame Number

mfn: Machine Page Frame Number

CR3 Hardware

PTE:mfn

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 198

insertions and deletions initiated by a guest OS. This
information is used to maintain the address translation
for the guest. Two new data structures are added to Xen:

• The Machine VHPT is a per virtual CPU data
structure. It is maintained by the hypervisor and
tracks the translations for guest TR and TC entries
mapping normal memory. It is walked by the
hardware VHPT walker on a TLB miss.

The Itanium processor architecture defines two
formats for the VHPT. The short-format VHPT is
meant to be used by an OS to implement linear page
tables. The long-form VHPT has a larger foot print
but supports protection keys and collision chains.
We have extended the Xen hypervisor to use the
long-form VHPT.

• The guest software TLB structure is used to track
guest TRs and TCs mapping memory mapped I/O
addresses or less than preferred page table entries.
Access to these addresses must be intercepted and
forwarded to the device model.

Region Identifier (RID) is an important component of
the Itanium architecture virtual memory management
system. It is used to uniquely identify a region of virtual
address. Per Itanium architecture specifications, RID
should have at least 18 bits and at most 24 bits. The
exact number of RID bits implemented by a processor
can be found by using the PAL_VM_SUMMARY call.
An address lookup will require matching the RID as well
as the virtual address.

Each IPF guest OS thinks it has unique ownership of the
RIDs. If you allow two VT-i domains to run on the same
processor with the same RID, you need to flush the
machine TLB whenever a domain is switched out. This
will have a significant negative impact on system
performance.

The solution we used for Xen is to partition the RIDs
between the domains. Specifically, we reserved several
high-order bits from the RID as the guest identifier. The
machine RID used for the guest is then a concatenation
of the guest ID and the RID managed by the guest itself.

Machine_rid=guest_rid + (guest_id << 18)

As an illustration, if we have a CPU that support a 24-bit
RID, the guest firmware inside the VT-i guest will report
only 18-bit RID to the guest. The actual 24-bit RID
installed into the machine will have the guest identifier
in the upper 6-bit.

We also need two more RIDs per domain for guest
physical mode emulation. The guest physical mode
accesses are emulated by using a virtual address with

special RIDs. This restricts the total number of IPF
guests to 63.

This is a reasonable solution when the number of
concurrent guests is limited and the guests are not
running millions of processes concurrently. A more
elaborate scheme is needed if this assumption is not true.

Device Virtualization
Figure 5 illustrates the device virtualization logic in Xen.
The Virtual I/O devices (device models) in Dom0
provide the abstraction of a PC platform to the HVM
domain. Each HVM domain sees an abstraction of a PC
platform with a keyboard, mouse, real-time clock, 8259
programmable interrupt controller, 8254 programmable
interval timer, CMOS, IDE disk, floppy, CDROM, and
VGA/graphics.

To reduce the development effort, we reuse the device
emulation module from the open source QEMU project
[8]. Our basic design is to run an instance of the device
models in Dom0 per HVM domain. Performance critical
models like the Programmable Interrupt Timer (PIT) and
the Programmable Interrupt Controller (PIC), are moved
into the hypervisor.

Figure 5: I/O Device virtualization

The primary function of the device model is to wait for
an I/O event from the HVM guest and dispatch it to the
appropriate device emulation model. Once the device
emulation model completes the I/O request, it will
respond back with the result. A shared memory between
the device model and the Xen hypervisor is used for
communication of I/O request and response.

The device model utilizes Xen’s event channel
mechanism and waits for events coming from the HVM
domain via an event channel, with appropriate timeouts
to support the internal timer mechanisms within these
emulators.

Hypervisor

intercept

Domain0 HVM

Unmodified
OS

Device
Module

I/O Request Resume
I/O done

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 199

I/O Port Accesses
We set up the I/O bitmap to intercept I/O port accesses
by the guest. At each such VM exit, we collect exit
qualification information such as port number, access
size, direction, string or not, REP prefixed or not, etc.
This information is packaged as an I/O request packet
and sent to the device model in Dom0.

Following is an example of an I/O request handling from
a HVM guest:

1. VM exit due to an I/O access.

2. Decode the instruction.

3. Make an I/O request packet (ioreq_t) describing the
event.

4. Send the event to the device model in Dom0.

5. Wait for response for the I/O port and MMIO
operation from the device model.

6. Unblock the HVM domain.

7. VMRESUME back to the guest OS.

Although this design significantly reduced our
development efforts, almost all I/O operations require
domain switches to Dom0 to run the device model,
resulting in high CPU overhead and I/O latencies. To
give HVM domains better I/O performance, we also
ported Xen’s Virtual Block Device (VBD) and Virtual
Network Interface (VNIF) to HVM domains.

Memory-Mapped I/O Handling
Most devices require memory-mapped I/O to access the
device registers. Critical interrupt controllers, such as
I/O APIC, also require memory-mapped I/O access. We
intercept these MMIO accesses as page faults.

On each VM exit due to page fault, you need to do the
following:

• Check the PTE to see if the guest page-frame
belongs to the MMIO range.

• If so, decode the instruction and send an I/O request
packet to the device model in Dom0.

• Otherwise, hand the event to the shadow page code
for handling.

The Itanium processor family supports memory-mapped
I/O only. It implements the above logic in the page fault
handler.

Interrupts Handling
The real local APICs and I/O APICs are owned and
controlled by the Xen hypervisor. All external interrupts
will cause VM exits. Interrupts owned by the hypervisor
(e.g., the local APIC timer) are handled inside the

hypervisor. Otherwise the handler in Dom0 is used if the
interrupt is not used by the hypervisor. This way the
HVM domain does not handle real external interrupts.

The HVM guests only see virtualized external interrupts.
The device models can trigger a virtual external interrupt
by sending an event to the interrupt controller (PIC or
APIC) device model. The interrupt controller device
model then injects a virtual external interrupt to the
HVM guest on the next VM entry.

Virtual Device Drivers
The VBD and VNIF are based on a split driver pair
where the front-end driver runs inside a guest domain
while the backend driver runs inside Dom0 or an I/O
VM. To port these drivers to HVM domains, we have to
solve two major challenges:

1. Define a way to allow the hypervisor to access data
inside the guest, based on a guest virtual address.

We solved this problem by defining a
copy_from_guest() hypercall that will walk the
guest’s page table and map the resulting physical
pages into the hypervisor address space.

2. Define a way to signal Xen events to the virtual
drivers. This must be done in a way that is
consistent with the guest OSs device driver
infrastructure.

We solved this problem by implementing the driver
as a fake PCI device driver with its own interrupt
vector. This vector is communicated to the
hypervisor via a hypercall. Subsequently, the
hypervisor will use this vector to signal an event to
the virtual device driver.

The send performance of the VNIF ported this way
approximates that of the VNIF running in
paravirtualized DomU. The receive throughput is lower.
We are continuing our investigation.

PERFORMANCE TUNING VT-X GUESTS
In this section we describe the performance tuning
exercise done to date for VT-x guests. The classic
approach is to run a synthetic workload inside an HVM
domain and compare the performance against the same
workload running inside an identically configured
paravirtualized domain. But to understand why the
domain operates the way it does, we have to extend tools
like Xentrace and Xenoprof to support HVM domains
also.

Xentrace is a tool that can be used to trace events in the
hypervisor. It can be used to count the occurrence of key

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 200

events and their handling time. We extended this tool to
trace VT-x specific information such as VM exits,
recording the exit cause and the handling time.

Xenoprof is a port of OProfile to the Xen environment.
It is a tool that uses hardware performance counters to
track clock cycle count, instruction retirements, TLB
misses, and cache misses. Each time a counter fires,
Xenoprof samples the program counter, thus allowing a
profile to be built for the program hotspots. The original
Xenoprof supports paravirtualized guests only. We
extended this tool to support HVM domains.

A typical tuning experiment proceeds as follows:

1. Run a workload and use Xentrace to track the VM
exit events occurring during the run.

2. Run a workload and use Xenoprof to profile the
hotspots in the hypervisor.

We observed the bulk of the exits is caused by I/O
instruction or shadow page table operations. I/O
instructions have the longest handling time, requiring a
context switch to Dom0. At one stage of our tuning
experiment, 40% of the hypervisor time was spent in the
shadow code.

Based on the above findings, we focused on tuning the
I/O handler code and improving the shadow page
handling.

• From the Xentrace result, we observed that the
majority of the guest I/O accesses are to the PIC
ports. This is because the guest timer handler needs
regular access to PIC ports. By moving the PIC

model to the hypervisor, we dramatically reduced
the PIC handling time. Kernel build performance
improved 14% and the CPU2k benchmark improved
by 7%.

• The original QEMU IDE model handles IDE DMA
operations in a synchronous fashion. When a guest
starts an IDE DMA operation, the QEMU model
will wait for the host to complete the DMA request.
We added a new thread to handle DMA operations
in an asynchronous fashion. This change increased
guest kernel build performance by 8%.

• The original QEMU NIC model is implemented
using a polling loop. We changed the code to an
event driven design that will wait on the packet file
descriptors. This change improved SCP
performance by 10–40 times.

• The original QEMU VGA model emulated a
graphics card. When the guest updates the screen,
each video memory write causes a VM exit, and
pixel data have to be forwarded to a VGA model in
Dom0. To speed up graphics performance, we
implemented a shared memory area between the
QEMU model and the HVM guest. Guest video
memory write will no longer cause a VM exit. The
VGA model will update the screen periodically
using data in the shared memory area. This
improved XWindow performance dramatically by
5–1000 times.

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 201

Figure 6: Performance comparison of paravirtualized vs. VT-x domain

BENCHMARK PERFORMANCE
Figure 6 compares the system performance results
reported by various benchmarks when running in an
identically configured paravirtualized domain and a VT-
x domain. The performance of the same benchmark in a
native environment is used as a reference. The data are
collected on an Intel® S3E2340 platform, with
2.3 GHz/800 MHz FSB dual-core Intel® Xeon®
processor, 4 GB of DDR2 533 MHz memory, a 160 GB
Seagate SATA disk and an Intel® E100 Ethernet
controller. RHEL4U1 is used as the OS in Dom0, DomU,
and VT-x domains. Dom0 is configured with two virtual
CPUs and 512 MB of memory. DomU and the VT-x
domains are configured with a single virtual CPU with
512 M of memory and a 20 GB physical partition as its
virtual disk.

CURRENT STATUS
As of this writing, Xen is under active development by
Intel and various partners in the community. Readers
interested in the latest status should consult the xen-
devel* or xen-user* mailing list. Novell and RedHat are
incorporating Xen into their upcoming releases. Virtual

Iron and XenSource are developing products that will
leverage Xen and Intel Virtualization Technology.

ACKNOWLEDGMENTS
The work described in this paper was made possible by
many people. We thank our management for supporting
this work. We acknowledge the many past and present
members of the Xen team in the Intel® Open Source
Technology Center for the many hours they spent
developing and testing this code. Felix Leung, Alberto
Munoz, and Mary Xie have provided immeasurable help
for the VT-i project. A special thanks goes to Ian Pratt
and Keir Fraser for working the full virtualization issues
with us. Leendert van Doorn is the creator of the
VMXAssist logic to execute real mode code. Their
guidance and assistance throughout the course of this
project has been invaluable.

REFERENCES

[1] Pratt, Ian; Fraser, Keir; Hand, Steve; Limpach,
Christian; Warfield, Andrew; Magenheimer, Dan;
Nakajima, Jun; Mallick, Asit; “Xen 3.0 and the Art
of Virtualization,” in Proceedings of Linux
Symposium, Volume Two, 2005.

http://lists.xensource.com/archives/html/xen-devel/
http://lists.xensource.com/archives/html/xen-devel/
http://lists.xensource.com/archives/html/xen-users/

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 202

[2] Uhlig, R.; Neiger, G.; Rodgers, D.; Santoni, A.L.;
Martins, F.C.M.; Anderson, A.V.; Bennett, S.M.;
Kagi, A.; Leung, F.H.; Smith, L.; “Intel
Virtualization Technology,” IEEE Computer
Volume 38, Issue 5, pp. 48–56, May 2005.

[3] Intel Virtualization Technology Specification for the
IA-32 Architecture, at
www.intel.com/technology/vt/, Intel Corp.

[4] Intel Virtualization Technology Specification for the
Intel Itanium Architecture, at
www.intel.com/technology/vt/, Intel Corp.

[5] Bochs IA-32 Emulator project, at
http://bochs.sourceforge.net/*

[6] MultiProcessor Specification, at
http://developer.intel.com/design/pentium/datashts/2
4201606.pdf, Intel Corp., Version 1.4, May 1997.

[7] Hewlett-Packard Corporation; Intel Corporation;
Microsoft Corporation; Phoenix Technologies Ltd.;
Toshiba Corporation; Advanced Configuration and
Power Interface Specification, Revision 3.0,
September 2, 2004.

[8] QEMU at http://fabrice.bellard.free.fr/qemu*

[9] Nakajima, Jun; Mallick, Asit; Pratt, Ian; Fraser,
Keir, “X86-64 XenLinux: Architecture,
Implementation, and Optimizations,” Ottawa Linux
Symposium, 2006.

AUTHORS’ BIOGRAPHIES
Yaozu Dong is a technical lead in the Open Source
Technology Center in Shanghai, PRC. He joined Intel in
1998 and had been involved in various embedded system
projects from PalmOS* to Windows CE* to Linux, and
several virtualization projects. He received his Bachelors
and Masters degrees in Engineering from Shanghai Jiao
Tong University, PRC. His e-mail address is eddie.dong
at intel.com.

Shaofan Li is an engineering manager in the Open
Source Technology Center in Shanghai, PRC. She joined
Intel in 1999 and had been involved in IPMI, EFI, and
several virtualization projects. She currently manages the
Xen development team of PRC in the Intel Open Source
Technology Center. Her team is focusing on enabling
Intel Virtualization Technology in Xen for both IA-32
and Itanium architectures. She received her Bachelors
and Masters degrees in Engineering from Shanghai Jiao
Tong University, PRC. Her e-mail address is susie.li at
intel.com.

Asit Mallick is a senior principal engineer leading the
system software architecture in the Intel Open Source
Technology Center. He joined Intel in 1992 and has

worked on the development and porting of numerous
operating systems to Intel architecture. Prior to joining
Intel, he worked in Wipro Infotech, India on the
development of networking software. Asit earned his
Masters degree in Engineering from the Indian Institute
of Science, India. His e-mail address is asit.k.mallick at
intel.com.

Jun Nakajima is a principal engineer leading Linux and
Xen projects at the Intel Open Source Technology
Center. He is recognized as one of the key contributors
to Xen, including Xen/XenLinux port to Intel EM64T,
the major VT-x support codes, and the architecture. He
has over 15 years of experience with operating system
internals and an extensive background in processor
architectures. Prior to joining Intel, he worked on
various projects in the industry such as AT&T/USL
Unix System V Releases (SVR) like the SVR4.2, and
Chorus microkernel based fault-tolerant distributed
SVR4. Jun earned his Bachelors of Engineering degree
from the University of Tokyo in Japan. His e-mail is
jun.nakajima at intel.com.

Kun Tian is a software engineer in the Open Source
Technology Center in Shanghai, PRC. He joined Intel in
2003 and has been involved in Linux kernel
development and virtualization-related projects. He is
currently working on adding Intel Virtualization
Technology to Xen for Itanium processor. He received
his Masters degree in Engineering from the University of
Electronic Science and Technology of China. His e-mail
is kevin.tian at intel.com.

Xuefei Xu is a software engineer in the Open Source
Technology Center in Shanghai, PRC. He joined Intel in
2003 and had been involved in several virtualization
projects. He currently is working on adding Intel
Virtualization Technology to Xen for Itanium. He
received his Masters degree in Engineering from the
Huazhong University of Science and Technology, PRC.
His e-mail is anthony.xu at intel.com.

Fred Yang is a project lead in the Intel Open Source
Technology Center in Santa Clara, California. He joined
Intel in 1989 and had been involved in a series of
operating system projects for Intel processors. He
currently leads the team that is adding Intel
Virtualization Technology to Xen for Itanium. He
received his M.S. degree in Computer Science from the
University of Texas at Arlington. His e-mail is fred.yang
at intel.com.

Wilfred Yu is an engineering manager in the Intel Open
Source Technology Center in Santa Clara, California. He
joined Intel in 1983 and had been involved in a series of
operating system projects for Intel processors. He
currently manages the team that is adding Intel

www.intel.com/technology/vt/
www.intel.com/technology/vt/
http://bochs.sourceforge.net/
http://developer.intel.com/design/pentium/datashts/24201606.pdf
http://developer.intel.com/design/pentium/datashts/24201606.pdf
http://fabrice.bellard.free.fr/qemu

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 203

Virtualization Technology to Xen. He received his
Bachelors degree in Engineering from McGill University
and his Masters of Applied Science and PhD degrees
from the University of Waterloo, Canada. His e-mail is
wilfred.yu at intel.com.

Δ Intel® Virtualization Technology requires a computer
system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and, for some uses, certain
platform software enabled for it. Functionality,
performance or other benefits will vary depending on
hardware and software configurations and may require a
BIOS update. Software applications may not be
compatible with all operating systems. Please check
with your application vendor.
Φ Intel® EM64T requires a computer system with a
processor, chipset, BIOS, operating system, device
drivers and applications enabled for Intel EM64T.
Processor will not operate (including 32-bit operation)
without an Intel EM64T-enabled BIOS. Performance
will vary depending on your hardware and software
configurations. See www.intel.com/info/em64t for more
information including details on which processors
support Intel EM64T or consult with your system vendor
for more information.

Copyright © Intel Corporation 2006. All rights reserved.
Intel, Itanium and Xeon are registered trademarks of
Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the
property of others.

This document contains information on products in the
design phase of development. The information here is
subject to change without notice. Do not finalize a
design with this information. Contact your local Intel
sales office or your distributor to obtain the latest
specifications and before placing your product order.

INFORMATION IN THIS DOCUMENT IS
PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY,

OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Intel may make changes to specifications and product
descriptions at any time, without notice.

This publication was downloaded from
http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm
http://www.intel.com/info/em64t

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel® Virtualization Technology 204

THIS PAGE INTENTIONALLY LEFT BLANK

Copyright © 2006 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

