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ABSTRACT 

Xen* is an open source virtual machine monitor (VMM) 
developed at the University of Cambridge to support 
operating systems (OSs) that have been modified to run 
on top of the monitor. Intel has extended the Xen VMM 
to use Intel® Virtualization TechnologyΔ (VT) to support 
unmodified guest OSs also. This was done for IA-32 
Intel® Architecture processors as well as Itanium® 
architecture processors. 

In this paper we describe the changes that have been 
made to Xen to enable this support. We also highlight 
the optimizations that have been made to date to deliver 
good virtualized performance. 

INTRODUCTION  
Xen is an open source virtual machine monitor (VMM) 
that allows the hardware resources of a machine to be 
virtualized and dynamically shared between OSs running 
on top of it [1]. Each virtual machine (VM) is called a 
Domain, in Xen terminology. Xen provides isolated 
execution for each domain, preventing failures or 
malicious activities in one domain from impacting 
another domain. The Xen hypervisor and Domain0 
(Dom0) are a required part of any Xen-based server. 
Multiple user domains, called DomainU in Xen 
terminology, can be created to run guest OSs.  

Unlike the full virtualization solutions offered by the 
IBM VM/370*, or VMware’s ESX* and Microsoft’s 
Virtual PC product*, Xen began life as a VMM for guest 
OSs that have been modified to run on the Xen 
hypervisor. User applications within these OSs run as is, 
i.e., unmodified. This technique is called 

“paravirtualization,” and it delivers near native 
performance for the guest OS, only if the guest OSs 
source code can be modified.  

Xen versions 1.0 and 2.0 use paravirtualization 
techniques to support 32-bit platforms and Linux* guests. 
They use the standard IA-32 protection and 
segmentation architecture for system resource 
virtualization. The hypervisor runs in the highest 
privilege level ring 0 and has full access to all memory 
on the system. Guest OSs use privilege levels 1, 2, and 3 
as they see fit. Segmentation is used to prevent the guest 
OS from accessing the Xen address space. 

Xen 3.0 is the first open-source VMM that uses Intel 
Virtualization Technology (VT) to support unmodified 
guest OSs as well as paravirtualized guest OSs. Xen 3.0 
also added support for 64-bit platforms and 64-bit guests 
[9]. Page-level protection is used to protect the 64-bit 
hypervisor from the guest. 

In this paper, we begin with a brief overview of Intel VT 
and then we explain how we extended Xen to take 
advantage of VT. We highlight key virtualization issues 
for IA-32, Intel® EM64TΦ, and Itanium processors and 
explain how they are addressed in Xen 3.0. Finally, we 
highlight some of the changes that have been made to the 
hypervisor and the device models to improve 
performance.  

INTEL® VIRTUALIZATION 
TECHNOLOGY 
Intel VT is a collection of processor technologies that 
enables robust execution of unmodified guest OSs on 
Intel VT-enhanced VMMs [2]. VT-x defines the 
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extensions to the IA-32 Intel Architecture [3]. VT-i 
defines the extensions to the Intel Itanium architecture 
[4]. 

VT-x augments IA-32 with two new forms of CPU 
operation: virtual machine extensions (VMX) root 
operations and VMX non-root operations. The transition 
from VMX root operation to VMX non-root operation is 
called a VM entry. The transition from a VMX non-root 
operation to VMX root operation is called a VM exit. 

A virtual-machine control structure (VMCS) is defined 
to manage VM entries and exits, and it controls the 
behavior of instructions in a non-root operation. The 
VMCS is logically divided into sections, two of which 
are the guest-state area and the host-state area. These 
areas contain fields corresponding to different 
components of processor state. VM entries load 
processor state from the guest-state area. VM exits save 
processor state to the guest-state area and then load 
processor state from the host-state area.  

The VMM runs in root operation while the guests run in 
VMX non-root operation. Both forms of operation 
support all four privilege levels (i.e., rings 0, 1, 2, and 
3). The VM-execution control fields in the VMCS allow 
the VMM to control the behavior of some instructions in 
VMX non-root operation and the events that will cause 
VM exits. Instructions like CPUID, MOV from CR3, 
RDMSR, and WRMSR will trigger VM exits 
unconditionally to allow the VMM to control the 
behavior of the guest. 

VT-i expands the Itanium processor family (IPF) to 
enable robust execution of VMs. A new processor status 
register bit (PSR.vm) has been added to define a new 
operating mode for the processor. The VMM runs with 
this bit cleared while the guest OS runs with it set. 
Privileged instructions, including non-privileged 
instructions like thash, ttag and mov cupid that may 
reveal the true operating state of the processor, trigger 
virtualization faults when operating in this mode. 

The PSR.vm bit also controls the number of virtual-
address bits that are available to software. When a VMM 
is running with PSR.vm = 0, all implemented virtual-

address bits are available. When the guest OS is running 
with PSR.vm = 1, the uppermost implemented virtual-
address bit is made unavailable to the guest. Instruction 
or data fetches with any of these address bits set will 
trigger unimplemented data/instruction address faults or 
unimplemented instruction address traps. This provides 
the VMM a dedicated address space that guest software 
cannot access. 

VT-i also defines the processor abstraction layer (PAL) 
interfaces that can be used by the VMM to create and 
manage VMs. A Virtual Processor Descriptor (VPD) is 
defined to represent the resources of a virtual processor. 
PAL procedures are defined to allow the VMM to 
configure logical processors for virtualization operations 
and to suspend or resume virtual processors. PAL run-
time services are defined to support performance-critical 
VMM operations.  

EXTENDING XEN* WITH INTEL VT 
Xen 3.0 architecture (Figure 1) has a small hypervisor 
kernel that deals with virtualizing the CPU, memory, and 
critical I/O resources, such as the interrupt controller. 
Dom0 is a paravirtualized Linux that has privileged 
access to all I/O devices in the platform and is an 
integral part of any Xen-based system. Xen 3.0 also 
includes a control panel that controls the sharing of the 
processor, memory, network, and block devices. Access 
to the control interface is limited to Dom0. Multiple user 
domains, called DomainU (DomU) can be created to run 
paravirtualized guest OSs. Dom0 and DomU OSs use 
hypercalls to request services from the Xen hypervisor. 

When Intel VT is used, fully virtualized domains can be 
created to run unmodified guest OSs. These fully 
virtualized domains are given the special name of HVMs 
(hardware-based virtual machines). Xen presents to each 
HVM guest a virtualized platform that resembles a 
classic PC/server platform with a keyboard, mouse, 
graphics display, disk, floppy, CD-ROM, etc. This 
virtualized platform support is provided by the Virtual 
I/O Devices module. 

In the following sections we describe the extensions to 
each of these Xen components. 
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Figure 1: Xen 3.0 architecture 

Control Panel 
We have extended the control panel to support creating, 
controlling, and destroying HVM domains. The user can 
specify configuration parameters such as the guest 
memory map and size, the virtualized disk location, 
network configuration, etc. 

The control panel loads the guest firmware into the 
HVM domain and creates the device model thread 
(explained later) that will run in Dom0 to service 
input/output (I/O) requests from the HVM guest. The 
control panel also configures the virtual devices seen by 
the HVM guest, such as the interrupt binding and the 
PCI configuration. 

The HVM guest is then started, and control is passed to 
the first instruction in the guest firmware. The HVM 
guest executes at native speed until it encounters an 
event that requires special handling by Xen. 

Guest Firmware 
The guest firmware (BIOS) provides the boot services 
and run-time services required by the OS in the HVM. 
This guest firmware does not see any real physical 
devices. It operates on the virtual devices provided by 
the device models. 

For VT-x, we are re-using the open source Bochs BIOS 
[5]. We extended the Bochs BIOS by adding Multi-
Processor Specification (MPS) tables [6], Advanced 
Configuration and Power Interface (ACPI) tables [7], 
including the Multiple APIC Description Table 

(MADT). The BIOS and the early OS loader expect to 
run in real mode. To create the environment needed by 
these codes, we use VMXAssist to configure the VT-x 
guest to execute in virtual-8086 mode. Instructions that 
cannot be executed in this mode are intercepted and 
emulated with a software emulator. 

For VT-i, we developed a guest firmware using the 
Intel® Platform Innovation Framework for Extensible 
Firmware Interface (EFI). This guest firmware provides 
all EFI boot services required by IPF guest OSs. It is 
compatible with the Developer’s Interface Guide for 64-
bit Intel® Architecture-based Servers (DIG64) and 
provides the System Abstraction Layer (SAL), ACPI 2.0, 
and EFI 1.10 tables required by IPF guest OSs. 

Processor Virtualization 
The Virtual CPU module in Xen provides the abstraction 
of a processor to the HVM guest. It manages the virtual 
processor(s) and associated virtualization events when 
the guest OS is executing. It saves the physical processor 
state when the guest gives up a physical CPU, and 
restores the guest state when it is rescheduled to run on a 
physical processor. 

For the IA-32 architecture, a VMCS structure is created 
for each CPU in a HVM domain (Figure 2). The 
execution control of the CPU in VMX mode is 
configured as follows: 

• Instructions such as CPUID, MOV from/to CR3, 
MOV to CR0/CR4, RDMSR, WRMSR, HLT, 
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INVLPG, MOV from CR8, MOV DR, and MWAIT 
are intercepted as VM exits. 

• Exceptions/faults, such as page fault, are intercepted 
as VM exits, and virtualized exceptions/faults are 
injected on VM entry to guests. 

• External interrupts unrelated to guests are 
intercepted as VM exits, and virtualized interrupts 
are injected on VM entry to the guests. 

• Read shadows are created for the guest CR0, CR4, 
and time stamp counter (TSC). Read accesses to 
such registers will not cause VM exit, but will return 
the shadow values. 

 

 

Figure 2: VMCS 

For the Itanium architecture, a Virtual Processor Block 
(VPD) structure is created for each CPU in a HVM 
domain. The VPD has similar functionality as the VMCS 
in the IA-32 architecture. The virtualization control of 
the CPU is configured as follows: 

• Instructions such as MOV from/to RR, MOV 
from/to CR, ITC/PTC, ITR/PTR, MOV from/to 
PKR, MOV from/to IBR/DBR are intercepted as 
virtualization faults. 

• Instructions such as COVER, BSW are optimized to 
execute without virtualization faults. 

• Exceptions/faults are intercepted by the VMM, and 
virtualized exceptions/faults are injected to the guest 
on a VM resume. 

• External interrupts are intercepted by the VMM, and 
virtualized external interrupts are injected to the 
guest using the virtual external interrupt 
optimization. 

• Read shadows are created for the guest interruption 
control registers, PSR, CPUID. Read accesses to 
such registers will not cause virtualization fault, but 
will return the shadow values. 

• Write shadows are created for the guest interruption 
control registers. Write accesses to such registers 
will not cause virtualization fault, but will write to 
the shadow values. 

An interesting question when designing Xen concerns 
the processor features that are exposed to HVM guests. 
Some VMMs present only a generic, minimally featured 
processor to the guest. This allows the guest to migrate 
easily to arbitrary platforms, but precludes the guest 
from using new instructions or processor features that 
may exist in the processor. For Xen, we are exporting 
most CPUID bits to the guest. We clearly need to clear 
the VMX bit [Leaf 1, ECX:5], or else the guest may 
bring up another level of virtualization. Other bits to be 
cleared include machine check architecture (MCA), 
because MCA issues are handled by the hypervisor. 
Today’s OSs also use model-specific registers to detect 
the microcode version on the processor and to decide 
whether they need to perform a microcode update. For 
Xen, we decided to fake the update request, i.e., bump 
the microcode version number without changing the 
microcode itself.  

Memory Virtualization 
The virtual Memory Management Unit (MMU) module 
in the Xen hypervisor presents the abstraction of a 
hardware MMU to the HVM domain. HVM guests see 
guest physical addresses (GPAs), and this module 
translates GPAs to the appropriate machine physical 
addresses (MPAs). 

IA-32 Memory Virtualization 
The virtual MMU module supports all page table 
formats that can be used by the guest OS. 

• For IA-32 

a. it supports 2-level page tables with 4 KB 
page size for 32-bit guests. 

• For IA-32 Physical Address Extension (PAE) 

a. it supports 2-level page tables with 4 KB 
page sizes for 32-bit guests. 

b. it supports 3-level page tables with 4 KB 
and 2 MB page sizes for 32-bit PAE 
guests. 

• For Intel EM64T 

a. it supports 2-level page tables with 4 KB 
page size for 32-bit guests. 
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b. it supports 3-level page tables with 4 KB 
and 2 MB page sizes for 32-bit PAE 
guests. 

c. it supports 4-level page tables with 4 KB 
and 2 MB page sizes for 64-bit guests. 

For the IA-32 architecture, this module maintains a 
shadow page table for the guest (Figure 3). This is the 
actual page table used by the processor during VMX 
operation, containing page table entries (PTEs) with 
machine page-frame numbers. Every time the guest 
modifies its page mapping, either by changing the 
content of a translation, creating a new translation, or 
removing an existing translation, the virtual MMU 
module will capture the modification and adjust the 
shadow page tables accordingly. Since Xen already has 
shadow page table code for paravirtualized guests, we 
extended the code to support fully virtualization guests. 
The resultant code handles paravirtualized and 
unmodified guests in a unified fashion.  

 

Figure 3: Shadow page table 

From a performance point of view, the shadow page 
table code is the most critical for overall performance. 
The most rudimentary implementation includes the 
construction of shadow page tables from scratch every 
time the guest updates CR3 to request a TLB flush. This, 
however, will incur significant overhead. If we can tell 
which guest page table entries have been modified, we 
just need to clean up the affected shadow entries, 
allowing the existing shadow page tables to be reused.  

The following algorithm is used to optimize shadow 
page table management: 

• When allocating a shadow page upon page fault 
from the guest, write protect the corresponding 
guest page table page. This allows you to detect any 
attempt to modify the guest page table. For this to 
work, you need to find all translations that map the 
guest page table page. There are several 
optimizations for this as discussed below. 

• Upon page fault against a guest page table page, 
save a “snapshot” of the page and give write 
permission to the page. The page is then added to an 
“out of sync” list with the information on such an 
attempt (i.e., which address, etc.). Now the guest 
can continue to update the page. 

• When the guest executes an operation that results in 
the flush TLB operation, reflect all the entries on the 
“out of sync list” to the shadow page table. By 
comparing the snapshot and the current page in the 
guest page table, you can update the shadow page 
table efficiently by checking if the page frame 
numbers in the guest page tables are valid (i.e., 
contained in the domain). 

Itanium Processor Architecture Memory 
Virtualization 

 

Figure 4: IPF TLB virtualization 

The Itanium processor architecture defines Translation 
Register (TR) entries that can be used to statically map a 
range of virtual addresses to physical addresses. 
Translation Cache (TC) entries  are used for dynamic 
mappings. Address translation entries can reside in either 
the TLB or in a Virtual Hash Page Table (VHPT). On a 
TLB miss, a hardware engine will walk the VHPT to 
extract the translation entry for the referenced address 
and insert the translation into the TLB. 

Figure 4 illustrates the TLB virtualization logic in Xen. 
We extended the Xen hypervisor to capture all TLB 
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insertions and deletions initiated by a guest OS. This 
information is used to maintain the address translation 
for the guest. Two new data structures are added to Xen: 

• The Machine VHPT is a per virtual CPU data 
structure. It is maintained by the hypervisor and 
tracks the translations for guest TR and TC entries 
mapping normal memory. It is walked by the 
hardware VHPT walker on a TLB miss. 

The Itanium processor architecture defines two 
formats for the VHPT. The short-format VHPT is 
meant to be used by an OS to implement linear page 
tables. The long-form VHPT has a larger foot print 
but supports protection keys and collision chains. 
We have extended the Xen hypervisor to use the 
long-form VHPT. 

• The guest software TLB structure is used to track 
guest TRs and TCs mapping memory mapped I/O 
addresses or less than preferred page table entries. 
Access to these addresses must be intercepted and 
forwarded to the device model. 

Region Identifier (RID) is an important component of 
the Itanium architecture virtual memory management 
system. It is used to uniquely identify a region of virtual 
address. Per Itanium architecture specifications, RID 
should have at least 18 bits and at most 24 bits. The 
exact number of RID bits implemented by a processor 
can be found by using the PAL_VM_SUMMARY call. 
An address lookup will require matching the RID as well 
as the virtual address. 

Each IPF guest OS thinks it has unique ownership of the 
RIDs. If you allow two VT-i domains to run on the same 
processor with the same RID, you need to flush the 
machine TLB whenever a domain is switched out. This 
will have a significant negative impact on system 
performance. 

The solution we used for Xen is to partition the RIDs 
between the domains. Specifically, we reserved several 
high-order bits from the RID as the guest identifier. The 
machine RID used for the guest is then a concatenation 
of the guest ID and the RID managed by the guest itself. 

Machine_rid=guest_rid + (guest_id << 18) 

As an illustration, if we have a CPU that support a 24-bit 
RID, the guest firmware inside the VT-i guest will report 
only 18-bit RID to the guest. The actual 24-bit RID 
installed into the machine will have the guest identifier 
in the upper 6-bit.  

We also need two more RIDs per domain for guest 
physical mode emulation. The guest physical mode 
accesses are emulated by using a virtual address with 

special RIDs. This restricts the total number of IPF 
guests to 63. 

This is a reasonable solution when the number of 
concurrent guests is limited and the guests are not 
running millions of processes concurrently. A more 
elaborate scheme is needed if this assumption is not true. 

Device Virtualization 
Figure 5 illustrates the device virtualization logic in Xen. 
The Virtual I/O devices (device models) in Dom0 
provide the abstraction of a PC platform to the HVM 
domain. Each HVM domain sees an abstraction of a PC 
platform with a keyboard, mouse, real-time clock, 8259 
programmable interrupt controller, 8254 programmable 
interval timer, CMOS, IDE disk, floppy, CDROM, and 
VGA/graphics. 

To reduce the development effort, we reuse the device 
emulation module from the open source QEMU project 
[8]. Our basic design is to run an instance of the device 
models in Dom0 per HVM domain. Performance critical 
models like the Programmable Interrupt Timer (PIT) and 
the Programmable Interrupt Controller (PIC), are moved 
into the hypervisor.  

 

 

Figure 5: I/O Device virtualization 

The primary function of the device model is to wait for 
an I/O event from the HVM guest and dispatch it to the 
appropriate device emulation model. Once the device 
emulation model completes the I/O request, it will 
respond back with the result. A shared memory between 
the device model and the Xen hypervisor is used for 
communication of I/O request and response. 

The device model utilizes Xen’s event channel 
mechanism and waits for events coming from the HVM 
domain via an event channel, with appropriate timeouts 
to support the internal timer mechanisms within these 
emulators.  
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I/O Port Accesses 
We set up the I/O bitmap to intercept I/O port accesses 
by the guest. At each such VM exit, we collect exit 
qualification information such as port number, access 
size, direction, string or not, REP prefixed or not, etc. 
This information is packaged as an I/O request packet 
and sent to the device model in Dom0. 

Following is an example of an I/O request handling from 
a HVM guest: 

1. VM exit due to an I/O access. 

2. Decode the instruction. 

3. Make an I/O request packet (ioreq_t) describing the 
event. 

4. Send the event to the device model in Dom0. 

5. Wait for response for the I/O port and MMIO 
operation from the device model. 

6. Unblock the HVM domain. 

7. VMRESUME back to the guest OS. 

Although this design significantly reduced our 
development efforts, almost all I/O operations require 
domain switches to Dom0 to run the device model, 
resulting in high CPU overhead and I/O latencies. To 
give HVM domains better I/O performance, we also 
ported Xen’s Virtual Block Device (VBD) and Virtual 
Network Interface (VNIF) to HVM domains. 

Memory-Mapped I/O Handling 
Most devices require memory-mapped I/O to access the 
device registers. Critical interrupt controllers, such as 
I/O APIC, also require memory-mapped I/O access. We 
intercept these MMIO accesses as page faults.  

On each VM exit due to page fault, you need to do the 
following: 

• Check the PTE to see if the guest page-frame 
belongs to the MMIO range.  

• If so, decode the instruction and send an I/O request 
packet to the device model in Dom0. 

• Otherwise, hand the event to the shadow page code 
for handling. 

The Itanium processor family supports memory-mapped 
I/O only. It implements the above logic in the page fault 
handler. 

Interrupts Handling 
The real local APICs and I/O APICs are owned and 
controlled by the Xen hypervisor. All external interrupts 
will cause VM exits. Interrupts owned by the hypervisor 
(e.g., the local APIC timer) are handled inside the 

hypervisor. Otherwise the handler in Dom0 is used if the 
interrupt is not used by the hypervisor. This way the 
HVM domain does not handle real external interrupts.  

The HVM guests only see virtualized external interrupts. 
The device models can trigger a virtual external interrupt 
by sending an event to the interrupt controller (PIC or 
APIC) device model. The interrupt controller device 
model then injects a virtual external interrupt to the 
HVM guest on the next VM entry.  

Virtual Device Drivers 
The VBD and VNIF are based on a split driver pair 
where the front-end driver runs inside a guest domain 
while the backend driver runs inside Dom0 or an I/O 
VM. To port these drivers to HVM domains, we have to 
solve two major challenges: 

1. Define a way to allow the hypervisor to access data 
inside the guest, based on a guest virtual address. 

We solved this problem by defining a 
copy_from_guest() hypercall that will walk the 
guest’s page table and map the resulting physical 
pages into the hypervisor address space. 

2. Define a way to signal Xen events to the virtual 
drivers. This must be done in a way that is 
consistent with the guest OSs device driver 
infrastructure. 

We solved this problem by implementing the driver 
as a fake PCI device driver with its own interrupt 
vector. This vector is communicated to the 
hypervisor via a hypercall. Subsequently, the 
hypervisor will use this vector to signal an event to 
the virtual device driver. 

The send performance of the VNIF ported this way 
approximates that of the VNIF running in 
paravirtualized DomU. The receive throughput is lower. 
We are continuing our investigation. 

PERFORMANCE TUNING VT-X GUESTS 
In this section we describe the performance tuning 
exercise done to date for VT-x guests. The classic 
approach is to run a synthetic workload inside an HVM 
domain and compare the performance against the same 
workload running inside an identically configured 
paravirtualized domain. But to understand why the 
domain operates the way it does, we have to extend tools 
like Xentrace and Xenoprof to support HVM domains 
also.  

Xentrace is a tool that can be used to trace events in the 
hypervisor. It can be used to count the occurrence of key 
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events and their handling time. We extended this tool to 
trace VT-x specific information such as VM exits, 
recording the exit cause and the handling time. 

Xenoprof is a port of OProfile to the Xen environment. 
It is a tool that uses hardware performance counters to 
track clock cycle count, instruction retirements, TLB 
misses, and cache misses. Each time a counter fires, 
Xenoprof samples the program counter, thus allowing a 
profile to be built for the program hotspots. The original 
Xenoprof supports paravirtualized guests only. We 
extended this tool to support HVM domains. 

A typical tuning experiment proceeds as follows: 

1. Run a workload and use Xentrace to track the VM 
exit events occurring during the run. 

2. Run a workload and use Xenoprof to profile the 
hotspots in the hypervisor. 

We observed the bulk of the exits is caused by I/O 
instruction or shadow page table operations. I/O 
instructions have the longest handling time, requiring a 
context switch to Dom0. At one stage of our tuning 
experiment, 40% of the hypervisor time was spent in the 
shadow code. 

Based on the above findings, we focused on tuning the 
I/O handler code and improving the shadow page 
handling.  

• From the Xentrace result, we observed that the 
majority of the guest I/O accesses are to the PIC 
ports. This is because the guest timer handler needs 
regular access to PIC ports. By moving the PIC 

model to the hypervisor, we dramatically reduced 
the PIC handling time. Kernel build performance 
improved 14% and the CPU2k benchmark improved 
by 7%. 

• The original QEMU IDE model handles IDE DMA 
operations in a synchronous fashion. When a guest 
starts an IDE DMA operation, the QEMU model 
will wait for the host to complete the DMA request. 
We added a new thread to handle DMA operations 
in an asynchronous fashion. This change increased 
guest kernel build performance by 8%. 

• The original QEMU NIC model is implemented 
using a polling loop. We changed the code to an 
event driven design that will wait on the packet file 
descriptors. This change improved SCP 
performance by 10–40 times. 

• The original QEMU VGA model emulated a 
graphics card. When the guest updates the screen, 
each video memory write causes a VM exit, and 
pixel data have to be forwarded to a VGA model in 
Dom0. To speed up graphics performance, we 
implemented a shared memory area between the 
QEMU model and the HVM guest. Guest video 
memory write will no longer cause a VM exit. The 
VGA model will update the screen periodically 
using data in the shared memory area. This 
improved XWindow performance dramatically by 
5–1000 times. 
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Figure 6: Performance comparison of paravirtualized vs. VT-x domain 

BENCHMARK PERFORMANCE 
Figure 6 compares the system performance results 
reported by various benchmarks when running in an 
identically configured paravirtualized domain and a VT-
x domain. The performance of the same benchmark in a 
native environment is used as a reference. The data are 
collected on an Intel® S3E2340 platform, with 
2.3 GHz/800 MHz FSB dual-core Intel® Xeon® 
processor, 4 GB of DDR2 533 MHz memory, a 160 GB 
Seagate SATA disk and an Intel® E100 Ethernet 
controller. RHEL4U1 is used as the OS in Dom0, DomU, 
and VT-x domains. Dom0 is configured with two virtual 
CPUs and 512 MB of memory. DomU and the VT-x 
domains are configured with a single virtual CPU with 
512 M of memory and a 20 GB physical partition as its 
virtual disk. 

CURRENT STATUS 
As of this writing, Xen is under active development by 
Intel and various partners in the community. Readers 
interested in the latest status should consult the xen-
devel* or xen-user* mailing list. Novell and RedHat are 
incorporating Xen into their upcoming releases. Virtual 

Iron and XenSource are developing products that will 
leverage Xen and Intel Virtualization Technology.  
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