

PVFS: Past, Present,
Future

What Is a Parallel File System?

 Distributes file data across multiple
nodes on a parallel computer
• RAID distributes across disks
• Distributed FS distributes files across

servers
 Support concurrent access by tasks in a

parallel application

What is PVFS?

 Parallel Virtual File System
• v0 1994

• based on Vespa and PVM
• v1 1996

• strided non-contiguous access patterns
• collective access reordering

• v2 2002
• code base rewritten for efficiency, portability,

extensibility
• MPI based non-contiguous access patterns
• production ready features

PVFS Design Goals

• Scalable
• Configurable file striping
• Non-contiguous I/O patterns
• Eliminates bottlenecks in I/O path
• Does not need locks for metadata ops
• Does not need locks for non-conflicting

applications
• Usability

• Very easy to install, small VFS kernel driver
• Modular design for disk, network, etc
• Easy to extend

I/O in HPC Systems

 HPC applications increasingly rely on I/O subsystems
• Large input datasets, checkpointing, visualization

 Programmers desire interfaces that match their
problem domain
• Multidimensional arrays, typed data, portable formats

 Two issues to be resolved by I/O system
• Performance requirements (concurrent access to HW)
• Gap between app. abstractions and HW abstractions

 Software required to address both of these problems

...

...

Clients running applications
(100s-10,000s)

I/O devices or servers
(10s-1000s)

Storage or System Network

PVFS Architecture

Client

Client

Client

Client

Client

Client

Client

Client

Server

Server

Server

Server

 Components
• clients library links

to applications
• network drivers

(TCP/IP, Myrinet,
Infiniband, etc.)

• servers processes
manage I/O devices

I/O Software Stack

 Computational science applications
have complex I/O needs
• Performance and scalability

requirements
• Usability (Interfaces!)

 Software layers combine to
provide functionality
• High-level I/O libraries provide useful interfaces

• Examples: Parallel netCDF, HDF5
• Middleware optimizes and matches to file system

• Example: MPI-IO
• Parallel file system organizes hardware and

actually moves data
• Examples: PVFS, GPFS, Lustre

High-level I/O Library

I/O Middleware

Parallel File System

I/O Hardware

Application

 PVFS Interfaces

 PVFS client library designed for systems
• exposes wide range of features and

performance enhancing options
 ROMIO MPI-IO interface for high

performance parallel programs
 Linux kernel interface for routine

management (ls, rm, cp, chmod, etc.)
 Posix-like interface

Non-contiguous I/O

 Noncontiguous I/O operations
are common in computational
science applications

 Most PFSs available today
implement a POSIX-like interface
(open, write, close)

 POSIX noncontiguous support is
poor:
• readv/writev only good for

noncontiguous in memory
• POSIX listio requires matching sizes

in memory and file
 Better interfaces allow for better

scalability

Noncontiguous in file
Memory

File

Noncontiguous in memory
Memory

File

Noncontiguous in memory and file
Memory

File

Semantics

• Sequential Consistency
• the “gold” standard
• specified by Posix

• BUT ...
• Expensive to implement for performance and

scalability
• Not needed if applications well behaved

• PVFS uses a weaker consistency model
• Indistinguishable from SC for many programs
• Provides much better performance/scalability

Semantics Example

File1
SRV1 SVR2 SRV3 SRV4 SRV5 SRV6 SRV7

Semantics Example(1)

File1
SRV1 SVR2 SRV3 SRV4 SRV5 SRV6 SRV7

CLT1

CLT2

Semantics Example(2)

File1
SRV1 SVR2 SRV3 SRV4 SRV5 SRV6 SRV7

Acceptable!

Semantics Example(3)

File1
SRV1 SVR2 SRV3 SRV4 SRV5 SRV6 SRV7

Acceptable!

Semantics Example(4)

File1
SRV1 SVR2 SRV3 SRV4 SRV5 SRV6 SRV7

NOT Acceptable!!!

Semantics Example(5)

File1
SRV1 SVR2 SRV3 SRV4 SRV5 SRV6 SRV7

CLT1

CLT2

Most application NEVER do this!
Use synchronization!

PVFS Is Good For

 Large files (>1GB)
 Large accesses (>1MB)
 Large number of clients
 Large number of servers
 Not so good for

• small files
• lots of files (1M files in a dir)
• small accesses
• interactive use

NOT a replacement
for NFS!

What is wrong with small?

 PVFS does not cache data on the client
• the overhead of I/O is large when data is

small
 But ... we are developing client caching

• caching on the client is hard
• consistency issues become even more

complex
• we plan to continue our weaker consistency

model to allow efficient client caching

Development and Support

• Argonne National Laboratory
• Rob Ross, Phil Carns, Rob Latham, Sam Lang

• Clemson University
• Academic research team
• Professional development team

• Ohio Supercomputer Center
• Pete Wyckoff, Troy Baer, Ananth Devulapalli

• PVFS Community
• Northwestern, CMU, Ohio State, Oregon, Michigan,

Heidelberg (Gr)
• Ames, Sandia
• Acxiom, Myricom

Current Development

 Small file support
 Scalable metadata ops
 Security enhancements
 Redundancy
 BlueGene P

Small File Support

• Stuffed files
• small files on one server w/metadata

• Lazy stripe allocation
• small files only use a few stripes

• Client caching
• small accesses cached, latency reduced
• various consistency models available

• read-only
• non-overlapping write
• weaker consistency
• sequential consistency

Scalable Metadata Ops

• Server-to-server collective comm
• scalable operations on large number of servers

• Distributed directories
• very large (1M files) directories accessed in

parallel
• Pre-allocated stripes

• reduce communication at create time
• Readdir plus

• aggregate multiple reads

Security Enhancements

• Capability based security
• signed structure transfers access control
• timeouts, revoke lists, sequencing

• Certificate based authentication
• conforms with existing authentication

• Unix and ACS style access control
• familiar and flexible

Redundancy

• Hardware based high availability
• most effective
• best performance

• FS supported mirroring
• working prototype
• may see on checkpointing system

• FS supported parity redundancy
• depends on demand

BlueGene/P Systems at ANL

100T /
500T

10 Gb/s
Switch

Complex

10Gb/s Enet

4xDDR IB

4Gb/s FC

SWFS Slice x17

DA Servers x66

Tape Servers x64

x4
T&D

BG/P Rack x1
T&D

10 Gb/s
Switch

SWFS Slice x4 + 8HS

DA Servers x16

SWFS Slice x1

DA Servers x4

F10
Firewall

ESnet,
UltraScienceNet,

Internet2

x4

x3

T&D
BG/P Rack x1

T&D
BG/P Rack x1

Compute to storage path

10 Gb/s
Switch

Complex

BG/P Rack x1

 1024 compute nodes () in a rack communicate with IO nodes () via a tree
network

• Ratio of CNs to IONs is 64:1, each CN talks with one specific ION
 IONs communicate with file servers via 10GigE
 Per-CN I/O bandwidth is ~20 MB/sec (1.25 GBps / 64) if all are active

Software in Storage Path

SYSCALL
FORWARDER

Compute Node

Application

PVFS Kernel
Module

I/O Node

Tree
Network

VFS

U
se

rs
pa

ce
K

er
ne

l S
pa

ce

PVFS Request
Handler

PVFS Client

PVFS Client APIMPI-IO

AD_UFS

CIOD

• IBM software marshals arguments and forwards system calls to I/O node
• “I/O forwarding” layer, CIOD is the component on the I/O node

• CIOD replays system calls on behalf of application process
• IBM compute node kernel and I/O forwarding software make convoluted path to storage

• True for GPFS as well

Radix Solution

Compute Node

Application

I/O Node

MPI-IO

AD_ZOIDFS

Tree
Network

U
se

rs
pa

ce

ZOIDFS API
(FWD IMPL)

ZOID
FORWARDER

ZOIDFS API
(PVFS IMPL)

ZOID Daemon Process

ZOID Request
Handler

PVFS Client API

• Radix team is implementing replacement kernel (using Linux) and I/O forwarding
(called ZOID) for BG/P

• ZOID I/O protocol is more efficient than IBM version (allows aggregation)
• ZOID implementation hooks directly to PVFS libraries, eliminating copies

Conclusion

 PVFS has a long history
 PVFS today is used at both small and

large sites, industry and research
 There are issues to be aware of
 Development to overcome these is

going strong
 www.pvfs.org for downloads and

mailing lists

http://www.pvfs.org/

