

Managing and Executing Loosely-Coupled Large-Scale Applications on Clusters, Grids, and Supercomputers

Ioan Raicu

Distributed Systems Laboratory Computer Science Department University of Chicago

Collaborators:

Ian Foster (UC/CI/ANL), Yong Zhao (MS), Mike Wilde (CI/ANL), Zhao Zhang (CI), Alex Szalay (JHU), Jerry Yan (NASA/ARC), Catalin Dumitrescu (FANL), many others from Swift and Falkon teams

Argonne

GlobusWorld08 May 14th, 2008

1) Tackle Bigger and Bigger **Problems**

Managing and Executing Loosely-Coupled Large-Scale Applications on Clusters, Grids, and Supercomputers

2) Tackle Increasingly Complex Problems

Computational Scientist as Logistics Officer

Managing and Executing Loosely-Coupled Large-Scale Applications on Clusters, Grids, and Supercomputers

Falkon: a Fast and Light-weight tasK executiON framework

- **Goal:** enable the **rapid and efficient** execution of many independent jobs on large compute clusters
- Combines three components:
 - a streamlined task dispatcher able to achieve order-ofmagnitude higher task dispatch rates than conventional schedulers
 - *resource provisioning* through multi-level scheduling techniques
 - data diffusion and data-aware scheduling to leverage the co-located computational and storage resources

Falkon Overview

Dispatcher Throughput

[hroughput (tasks/sec)

- Fast:
 - Up to 3700 tasks/sec
- Scalable:
 - 54,000 processors
 - 1,500,000 tasks queued

Executor Implementation and Various Systems

Efficient:

 High efficiency with second long tasks on 1000s of -Coupled Large-Scale Applications on

and Supercomputers

Falkon Integration with Swift

Clusters, Grids, and Supercomputers

fMRI Application

- GRAM vs. Falkon: 85%~90% lower run time
- GRAM/Clustering vs. Falkon: 40%~74% lower run time

11

Clusters, Grids, and Supercomputers

Montage Application

- GRAM/Clustering vs. Falkon: 57% lower application run time
- MPI* vs. Falkon: <u>4% higher application run time</u>
- * MPI should be lower bound

MolDyn Application

- 244 molecules → 20497 jobs
- 15091 seconds on 216 CPUs → 867.1 CPU hours
- Efficiency: 99.8%
- Speedup: $206.9x \rightarrow 8.2x$ faster than GRAM/PBS
- 50 molecules w/ GRAM (4201 jobs) → 25.3 speedup

MARS Economic Model 172:16.3.15:44731 172:16.3.15:4573 172:16.3.15:4

- CPU Cores: 2048
- Tasks: 49152
- Micro-tasks: 7077888
- Elapsed time: 1601 secs
- CPU Hours: 894
- Speedup: 1993X (ideal 2048)
- Efficiency: 97.3%

Many Many Tasks: Identifying Potential Drug Targets

(Mike Kubal, Benoit Roux, and others)

5/14/2008

Managing and Executing Loosely-Coupled Large-Scale Applications on Clusters, Grids, and Supercomputers

DOCK on SiCortex

- CPU cores: 5760
- Tasks: 92160
- Elapsed time: 12821 sec
- Compute time: 1.94 CPU years

Managing and

Ξ

- Average task time: 660.3 sec
- Speedup: 5650X (ideal 5760)
- Efficiency: 98.2%

5/14/2008

AstroPortal Stacking Service

- Purpose
 - On-demand "stacks" of random locations within ~10TB dataset
- Challenge
 - Rapid access to 10-10K "random" files
 - Time-varying load
- Sample Workloads

Locality	Number of Objects	Number of Files
1	111700	111700
1.38	154345	111699
2	97999	49000
3	88857	29620
4	76575	19145
5	60590	12120
10	46480	4650
20	40460	2025
30	23695	790

5/14/2008

Managing and Executing Loosely-Coupled Large-Scale Applications on Clusters, Grids, and Supercomputers

AstroPortal Stacking Service with Data Diffusion

AstroPortal Stacking Service with Data Diffusion

Data Diffusion: Data-Intensive Workload

- 250K tasks on 128 processors
 - 10MB read, 10ms compute
- Comparing GPFS with data diffusion

Data Diffusion: Data-Intensive Workload

Managing and Executing Loosely

Clusters, Grids,

5/14/2008

←Throughput:

- Average: 14Gb/s vs 4Gb/s
- Peak: 100Gb/s vs. 6Gb/s

Hadoop vs. Swift

- Classic benchmarks for MapReduce
 - Word Count
 - Sort
- Swift performs similar or better than Hadoop (on 32 processors)

Mythbusting

- Embarrassingly Happily parallel apps are trivial to run
 - Logistical problems can be tremendous
- Loosely coupled apps do not require "supercomputers"
 - Total computational requirements can be enormous
 - Individual tasks may be tightly coupled
 - Workloads frequently involve large amounts of I/O
- Loosely coupled apps do not require specialized system software
- Shared file systems are good all around solutions
 - They don't scale proportionally with the compute resources

Solutions

- Falkon
 - A Fast and Light-weight tasK executiON framework
 - Globus Incubator Project
 - http://dev.globus.org/wiki/Incubator/Falkon
- Swift
 - Parallel programming tool for rapid and reliable specification, execution, and management of large-scale science workflows
 - <u>http://www.ci.uchicago.edu/swift/index.php</u>
- Environments:
 - Clusters: TeraPort (TP)
 - Grids: Open Science Grid (OSG), TeraGrid (TG)
 - Specialized large machines: SiCortex 5732
 - Supercomputers: IBM BlueGene/P (BG/P)

More Information

- More information:
 - Personal research page: <u>http://people.cs.uchicago.edu/~iraicu/</u>
 - Falkon: http://dev.globus.org/wiki/Incubator/Falkon
 - Swift: http://www.ci.uchicago.edu/swift/index.php
- Collaborators (relevant to this proposal):
 - Ian Foster, The University of Chicago & Argonne National Laboratory
 - Alex Szalay, The Johns Hopkins University
 - Yong Zhao, Microsoft
 - Mike Wilde, Computation Institute, University of Chicago & Argonne National Laboratory
 - Catalin Dumitrescu, Fermi National Laboratory
 - Zhao Zhang, The University of Chicago
 - Jerry C. Yan, NASA, Ames Research Center
- Funding:
 - NASA: Ames Research Center, Graduate Student Research Program (GSRP)
 - DOE: Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy
 - NSF: TeraGrid