A Multilayer Approach to Simulate Large Multiscale Computational mechanics Problem

Using Grid

Φ

BROWN

Leopold Grinberg

George Em Karniadakis

Joseph Insley Michael Papka

Brian Toonen Nicholas Karonis

This work was supported by the National Science Foundation's CI-TEAM program under contract OCI-0636412, NSF NMI program under contract OCI-0330664 and NSF-NMI 0330664.

Also NSF programs directed by Leland Jameson, Frederica Darema, and Almadena Chtchelkanova.

The 20+ Year Vision

- Imagine a "digital body double"
 - 3D image-based medical record
 - Includes diagnostic, pathologic, and other information
- Used for:
 - Diagnosis
 - Less invasive surgery-by-robot
 - Experimental treatments
- Digital Human Effort
 - Lead by the Federation of American Scientists

Genes to Organs & Organisms

http://www.fas.org/dh/

Digital Human: International Project

How Large is the Arterial-Tree Problem?

➢ On the average, an adult human who weighs 70 kg. has a blood volume of 5 liters.

Typical volume of tetrahedral elements with an edge of 0.5 mm is about 0.0147 mm^3.

> 339M tetrahedral elements.

> $339E6^{*}(P+3)(P+2)^{2} = 85.4 E9$ Degrees of Freedom per one variable (P=4) => 10 TB of Memory!

> A human is a multicellular eukaryote consisting of an estimated 100 trillion cells...

3D Numerical Simulation of Flow in Human Aorta

	# of spectral elements	Polynomial order	# ot (per v
Domain A	120,813	6	69,5
Domain B	20,797	6	11,9
Domain C	106,219	6	61,1
Domain D	77,966	6	44,9
Total	325,795	6	187,6

# CPU (CRAY XT3)	256	994	1976
CPU time / time step	4.06	1.24	0.77
	sec	sec	sec

3D Numerical Simulation of Flow in Human Cranial Arterial System

	# of elements	Polynomial order	# of DOF per variable
omain A	162,909	5	63,860,328
omain B	44,632	5	17,495,744
omain C	128,508	5	50,375,136
omain D	123,201	5	48,294,792
Total	459,250	5(6)	180,026,000 (264,528,000)

# CPU (CRAY XT3)	CPU-time / time step
1024	1.4 sec
2048	0.92 sec
3265	0.61 sec

Impediments to Solution of Large Scale Problem

- Hardware limits:
 - Solution of a large scale problem requires thousands of processors.
 - Solution of a large scale problem requires *Terabytes of memory*.
 - Parallel efficiency is strongly affected by communication cost.
 - Low memory per core availability.
- Solution of large linear systems is extremely expensive:
 - Large condition number results in high iteration count.
 - The most effective preconditioners do not scale well on more than a
 - thousand of processors.

X

Our solution: a multi-layer hierarchical approach.

- Software: NEKTAR-G2
- Multilevel Partitioning
- Solution of Large Scale Problem:
 - on a single supercomputer
 - on TeraGrid

NEKTAR-G2

NEKTAR-G2 Prototype

The New Domain Decomposition Technique: The Idea

NEKTAR-G2: Prototype¹

- Overall simulation consists of
 - 1D computation through the full arterial tree;
 - Detailed 3D simulations on arterial bifurcations.
- ID results feed 3D simulations, providing flow rate and pressure for boundary conditions.
- MPICH-G2² was used for intra-site and inter-site communications on TeraGrid.

¹ S. Dong *et al.*, "Simulating and visualizing the human arterial system on the TeraGrid", *Future Generation Computer Systems*, Volume 22, Issue 8, October 2006, pp. 1011 - 1017

²N. Karonis et al, A Grid-Enabled Implementation of the Message Passing Interface, (*JPDC*), Vol. 63, No. 5, pp. 551-563, May 2003

NEKTAR-G2: Large Scale Flow Simulations on the TeraGrid

Nektar-G2 features 3D-3D coupling between domains.

Increased volume of data transfer between 3D blocks requires high level of parallelism.

MPIg is used for intra-site and intersite communications on TeraGrid.

Two-Level Domain Decomposition Technique for TeraGrid Simulations: Method

- Numerical solution is performed on *two levels*: on *outer level* loosely coupled problem is solved, on *inner level* several tightly problems are solved in parallel.
- *Multi-level partitioning* of the entire computational domain requires *multi-level parallelism* in order to maintain high parallel efficiency using thousands of processors.
- Solution of tightly coupled problems is performed by NEKTAR, a parallel numerical library based on the high-order spectral/hp element method¹.

Continuity in numerical solution is achieved by imposing proper boundary conditions on the sub-domains interfaces.

On TeraGrid *inter-* and *intra-site communication* is performed by MPIg library.

Multilevel Partitioning of Global Communicator

High Level Communicator Splitting

Low Level Communicator Splitting

Message Passing Across Sub-Domain Interface

Dual Domain Decomposition: Interface Boundary Conditions

	1		
Boundary Condition	Message size		
Velocity is computed at outlet and imposed as Dirichlet Boundary Condition at inlet	N _F *N _M *3* sizeof(double)		
Doundary Containen at miet	О(6КВ)		
Pressure is computed at inlet and imposed as Dirichlet Boundary	N _F *N _M * sizeof(double)		
Condition at outlet.	O(1KB)		
Velocity flux from inlet is averaged with velocity flux computed at outlet and	N _F *(P+3)*(P+2) ² sizeof(double)		
imposed as Newman Boundary Condition at outlet.	O(32KB)		

 N_F , N_M – number of faces and modes,

P - order of polynomial approximation.

Dual Domain Decomposition Method: details

Efficiency

Accuracy

Two Level Domain Decomposition: Efficiency

Mean CPU time required per time step.

Problem size: 67456 tetrahedral elements, polynomial order P=4 and P=5.

Computations were performed on the CRAY XT3 at PSC.

Two Level Domain Decomposition: Accuracy

At the outlet of the "orange" sub-domain fully developed boundary conditions are assumed.

Solution of Large Scale Problem with the New Domain Decomposition Method

- Numerical Simulation of a Flow in Aorta
- Communication/Computation Time Balance

Single machine Computation: Communication / Computation CPU-time balance

Simulation of a blood flow in Aorta. Nelements = 325,795; P = 6. Computation was performed on CRAY XT3 with 226 and 508 processors.

Single machine Computation: Standard and Dual Domain Decomposition, Parallel Speed-up

Simulation of a blood flow in Aorta. $N_{elements} = 325,795$; P = 6. Computation was performed on CRAY XT3.

The New Domain Decomposition Method on **TeraGrid**

TeraGrid Cross-Site Computation: Performance

NEKTAR-g2 + MPICHG2

NEKTAR-g2 + MPIg

•	==> bench_test1.dat <==			•	==> bench_test1.dat <==		
•	step = 196 COMM_TIME=	0.387799	COMP_TIME= 1.363969	٠	step = 196 COMM_TIME=	0.533426	COMP_TIME= 1.575322
•	step = 197 COMM_TIME=	0.431659	COMP_TIME= 1.347054	•	step = 197 COMM_TIME=	0.374780	COMP_TIME= 1.590261
•	step = 198 COMM_TIME=	0.374245	COMP_TIME= 1.333956	•	step = 198 COMM_TIME=	0.857370	COMP_TIME= 1.605632
•	step = 199 COMM_TIME=	0.399128	COMP_TIME= 1.300772	•	step = 199 COMM_TIME=	0.548640	COMP_TIME= 1.605805
•	step = 200 COMM_TIME=	0.465652	COMP_TIME= 1.415958	•	step = 200 COMM_TIME=	0.513864	COMP_TIME= 1.599325
•	==> bench_test2.dat <==			•	==> bench_test2.dat <==		
•	step = 196 COMM_TIME=	0.706931	COMP_TIME= 1.088679	•	step = 196 COMM_TIME=	0.889990	COMP_TIME= 1.060204
•	step = 197 COMM_TIME=	0.669795	COMP_TIME= 1.051480	•	step = 197 COMM_TIME=	1.369228	COMP_TIME= 1.078424
•	step = 198 COMM_TIME=	0.692732	COMP_TIME= 1.040437	•	step = 198 COMM_TIME=	1.081203	COMP_TIME= 1.073181
•	step = 199 COMM_TIME=	0.741545	COMP_TIME= 1.024879	•	step = 199 COMM_TIME=	1.083127	COMP_TIME= 1.036677
•	step = 200 COMM_TIME=	0.716007	COMP_TIME= 1.101272	•	step = 200 COMM_TIME=	1.182271	COMP_TIME= 1.059155
•	==> bench_test3.dat <==			•	==> bench_test3.dat <==		
•	step = 196 COMM_TIME=	0.021616	COMP_TIME= 1.737263	•	step = 196 COMM_TIME=	0.121957	COMP_TIME= 2.123489
•	step = 197 COMM_TIME=	0.021568	COMP_TIME= 1.722539	•	step = 197 COMM_TIME=	0.122057	COMP_TIME= 2.040032
•	step = 198 COMM_TIME=	0.021713	COMP_TIME= 1.760799	•	step = 198 COMM_TIME=	0.122080	COMP_TIME= 2.034881
•	step = 199 COMM_TIME=	0.021614	COMP_TIME= 1.718854	•	step = 199 COMM_TIME=	0.122216	COMP_TIME= 2.091826
•	step = 200 COMM_TIME=	0.021682	COMP_TIME= 1.760359	•	step = 200 COMM_TIME=	0.122080	COMP_TIME= 2.158722

Cpu time is measured (in seconds) on rank 0 of each sub-job. Communication time includes extra time we need to create message (MPI_Gatherv) pass it to partner cpu from another subjob and then scatter (with MPI_Scatterv) within appropriate group of processors.

Summary

- We developed and implemented a new scalable approach for solution of large problems on the TeraGrid and beyond.
- Overlapping computation with cross-site communication, performing simultaneous communication and full-duplex communication over multiple channels hides the expensive inter-site latency on TeraGrid.
- Future plan: improve communication algorithm (between different process groups).

Future plans

We aim to establish a biomechanics gateway on the TeraGrid and make the arterial tree a platform and a simulation framework for further developments and systematic studies in hemodynamics, disease modeling, and drug delivery.

