
Implementing a Philosophy for Transitioning
Existing Software to Network Processing

Peter Raeth
Ball Aerospace & Technologies Corp
praeth@ball.com

Page_2

An Overview of our Discussion

Roots of our customers’ throughput problems
Philosophy for addressing throughput problems
Creating a generic extensible approach
Applying philosophy to specific applications

Page_3

J. Loger, 7 Sep 2005

Throughput Problem RootsThroughput Problem Roots

Constant observation
Continuous data flow
Real-time decisions
React to evolving environments
Know now - Act now

Modeling that approaches reality
Simulation first - Construction second
Increasing model fidelity
Rising simulation sampling rates
Realistic training via virtual reality

Circular
Error
Probability
(CEP)

Page_4

Moving Toward a General Philosophy

Start with existing infrastructure
─ multi-processing, distributed processing, cluster processing
─ wholesale replacement is expensive, time consuming, risky

Yet, enable opportunities in new hardware types
─ remain compatible with evolving infrastructure
─ physics chips, graphics chips, RISC, multi-core, DSP, FPGA, ASIC
─ low-latency networks - faster memory bus
─ increased network speed - more and faster memory
─ increased network capacity - enlarged data storage and handling

Open source and open standards to facilitate generality and portability
- network messaging - threads - job management
- user interfaces - web services - network management

Page_5

Moving Toward a General Philosophy

Establish clear path from theory to production reality
─ good applications are founded on good theory
─ but, theory alone is not enough
─ can not declare problem solved until production processes are improved
─ good theoretical foundations yield technology reusability

if implementation is sound

Page_6

Moving Toward a General Philosophy

Take modular and generic approach
Problem solving should span languages and operating systems
Software should be generic, not specific to given operating system
View components as independent cooperative objects
─ software, algorithms, data

Transition original code while interacting with domain experts
─ start with restructuring input and output to algorithm driver
─ produce same results when compared to original

Do not fall for application-specific hard-wiring
─ what we learn in one application should transfer easily to new applications

Do not accept build warnings
─ nothing should be allowed to obscure issues as the project proceeds
─ “warnings” accumulate, lead to production system failure, in our experience

Page_7

Moving Toward a General Philosophy

Take into account matters beyond hardware and software
─ customer is key focus
─ some of them have very strict transition standards
─ never ask for a waiver of those standards
─ “ilities” matter

• modifiability
• reusability
• accessibility
• extensibility
• scalability
• flexibility
• system portability
• workload manageability
• predictability
• maintainability
• usability

• programmability
• net centricity
• availability
• reliability
• off-shelf commodity h/w, s/w
• avoid proprietary components
• compatibility with existing tools
• integration with exiting systems
• consideration of human factors

Page_8

Employ Open Source Products

Removes cost of licensing
Takes advantage of community’s initiatives and for-fee support
Remain generic so that choice of tool is not a major factor
In our case, we have made the following choices
─ MPICH2 implementation of MPI

cluster processing
─ Condor

distributed processing, workflow management, job management, resource allocation
─ pthreads

multi processing
─ Opticks

data visualization and plug-in manager
─ Axis

translate Java classes into web services, generate Java wrappers for web services

Page_9

Most organizations have existing codes

Lots of existing analysis algorithms and simulation models
Written over last 20 years
Certified as accurate and complete, in the formal sense
Very accurate and effective in the functional sense
Low throughput relative to advancing needs
Need timely results, within decision/action windows of opportunity
Desire is for improved throughput without touching algorithms
Want transition with minimal re-engineering or new infrastructure
Networked version of codes need to produce same results as original
─ run faster with no change in functional behavior or user view of operation

Page_10

Throughput Expansion in Stages

Single-process baseline
Improve algorithm efficiency
Multi-processing extension
Cluster processing expansion for single jobs
Distributed processing for multiple jobs
Generic framework for porting existing codes to network environment
Allows for phased improvement in consultation with domain experts
Avoids rapid climb in complexity
Makes best use of existing infrastructure
Moves technical staff from what they know to what they need to learn
Encourages coaching and teaching, marked by patience
Organization can gradually embrace new approach to systems

25 Sep 06

Page_11

Partitioning Existing Programs

Data and Functional Partitioning
Employ either or both, depending on application
Look for opportunities where computation would exceed message
passing in networked version

Page_12

3 Basic Ways to Achieve Data Partitioning

By data group
─ each network process gets a number of data groups to work with
─ node holding a group performs all calculations on that group
─ example: image analysis, pixel is a data group
─ results sent to managing process
By data group component
─ each node gets a number of a data group’s components
─ node holding data group’s components analyzes those components
─ example: red, green, or blue component
─ results sent to process having remaining components or to managing process
By library component
─ combined with first two
─ each node receives its data and applies a portion of the analysis to that data
─ example: material detection applies only part of spectral library to pixel subset
─ results returned to managing node or to node(s) performing other analyses

Page_13

Functional Partitioning Examples

Time-consuming modules being run in series but not dependent on
outcome of preceding blocks during the same code cycle
Pipe-line processing for cases where multiple code cycles can be
going on at the same time
Independent blocks feeding a using function
Processes that bear no relationship to each other
Independent processes occasionally communicating with each other

Page_14

Important to Maintain Objectivity

Use clear metrics when judging throughput improvement (S.H. Morse, p33,1994)

Speedup: Clock time with one process
divided by clock time using N processes

─ ideal equals number of processes

Efficiency: Actual speedup divided by ideal speedup
─ speedup on N processes divided by N

Speedup and efficiency should not be confused
With increasing speedup, it may be possible to meet throughput goal
But, may be necessary to add “inefficient” number of processes
End Goal: Provide results fast enough to make a positive difference
within decision/action windows of opportunity

Page_15

Watch Evaluation Process

Do not begin network computing experiments with weakest machine
Then adding more and more capable machines
Gives false impression that experiment exceeded theoretical limits

Page_16

Avoid These Routes to Subjective Results
(D.H. Bailey, 1991)

Compare 32-bit performance to 64-bit performance
Assume inner kernel of application is sole performance determinant
Use assembly code and other low-level language constructs for performance and
compare them with Fortran or C implementations
Scale problem size with number of processors, but do not disclose this fact
Estimate linear scaling of performance without proof
Compare performance of heavily optimized benchmarks against unoptimized
benchmarks
Compare with old code on obsolete system
Base MFLOPS operation counts on the parallel implementation instead of on the best
sequential implementation
Give performance in terms of processor utilization, parallel speedup,
or peak MFLOPS per $, avoiding issue of “fast enough to matter”
Use numerically inefficient algorithms to show artificially high MFLOPS
Measure parallel run times on dedicated system, but measure conventional run times
on heavily loaded system

Page_17

Success in Application

Applied our approach to several languages and operating systems
─ Linux and Windows
─ IDL, MatLab, Simulink, C++

Same basic philosophy applied to each
Lessons learned on any one of these applied to all
Enables use on plug-ins to larger tool sets
─ user interfaces
─ job management
─ workflow management
─ resource management
─ web services

Page_18

One Approach to Cluster IDL

C++ main()

MPI

IDL dialogs

IDL runtime system

User’s IDL .sav

C++ dialogs

User console
initialization

I/O

IDL runtime system

User’s IDL .sav

IDL runtime system

User’s IDL .sav

MPI

Process 0 on initiating computer

Process P on some network node

Process 1 on some network node

C++
MPI interface

Page_19
5.00

7.00

9.00

11.00

13.00

15.00

17.00

19.00

21.00

23.00

25.00

1 2 3 4 5 6 7

Number of Worker Nodes

ru
nt

im
e

(s
ec

on
ds

)

IDL Runtime – Finding unique spectral elements

Sought 20 unique spectral
elements (endmembers)
─ hyperspectral data cube
─ 200 bands per pixel
─ 1000 x 256 pixels

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

1 2 3 4 5 6 7

Worker Node Added to Cluster

Speedup

tim
e

pe
r e

nd
m

em
be

r

Page_20

An Approach to Cluster MatLab

Similar to what we do in IDL

Avoids tool integration issues
with current IDL approach

Accommodates MatLab’s “pass
by value” approach to sending
variables to external modules
─ MatLab paradigm based on

Fortran (“pass by value”)
─ MPI assumes “pass by

reference”
─ MatLab can not pass new

values back through function
arguments

Page_21

Example MatLab Run: Image Convolution

Fundamental to image analysis
─ assigns new value to a pixel based on weighted average of neighbors
─ used to filter images in many ways for many reasons

Convolution code written in MatLab
3 x 3 filter over a 2112 x 2816 grayscale image
For this case, efficiency was nearly perfect (0.99 – 1.00)

Runtime

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8

Nodes

Speedup

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 3 4 5 6 7 8
Nodes

(Efficiency ranged between 0.99 and 1.00)

Speedup (improvement multiplier)Run Time (sec)

Page_22

One Approach to Simulink/RTW Models

Decompose model into independent cooperating components
For example: dampen a signal to desired value

Page_23

Decomposed Model
(two independent cooperating components)

Employ
Signal

Generate
Signal

Page_24

Comparing Results
(non-Decomposed vs. decomposed)

-1

-0.5

0

0.5

1

1.5

2

0.
00

6.
90

13
.8

0
20

.7
0

27
.6

0
34

.5
0

41
.4

0
48

.3
0

55
.2

0
62

.1
0

69
.0

0
75

.9
0

82
.8

0
89

.7
0

96
.6

0
10

3.
50

11
0.

40
11

7.
30

12
4.

20
13

1.
10

13
8.

00
14

4.
90

15
1.

80
15

8.
70

16
5.

60
17

2.
50

17
9.

40
18

6.
30

19
3.

20

Time

Sa
m

pl
ed

 V
al

ue

Non-Decomposed Model Decomposed Model

Page_25

0.52

0.43

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Model Type

R
un

tim
e

R
at

io

Non-Decomposed Decomposed (2 Nodes) Decomposed (1 Node)

Ratio of Wall-Clock Times

1.00

Page_26

Class Wrappers for Existing Code

• Wrapper enables single-task / multiple-resources
• Takes advantage of available cores and nodes
• Uses messages to pass data between modules
• Modules can run on multiple cores on same node
• Employed for single-task throughput improvement
• Does not require recoding to accommodate threads

Page_27

Example Application
Predictive Anomaly Detection (PAD)

Original Data Stream

Predicted Data Stream

Target NominationPrediction Error

• Target nomination in streaming data
• Highly generic
• No dependence on sensor type
• No physics model required
• Not deterministic
• Depends only on data temporal relationship

Page_28

Sample PAD Run

2200 frames (NightConqueror IR sensor, widely used in DOD)
512 x 640 pixels
60 Gaussian basis functions per pixel (19,660,800 terms total)
─ evaluate and update every frame

Supervisor reads frame from disk
Sends appropriate frame components to each process
Workers process frame components
Workers send results to supervisor
Supervisor organizes, reports, stores results

Page_29

Speedup Results
(single and multiple threads)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

2 3 4 5 6 7 8
Processes

Sp
ee

du
p

8 single-thread processes - 2 per node 8 single-thread processes - 1 per node
4 dual-thread processes - 1 per node

Processes or Threads

Page_30

Performance Hit Using Class Wrapper

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

1 2 3 4 5 6 7 8

Single-Thread - One Process per Node

R
un

tim
e

(s
ec

)

With Generic Cluster Interface Original Code - Embedded Clustering

Page_31

Not Just Computational Throughput

Must also consider
network throughput
─ especially for data

intensive applications
─ ex: streaming data,

grids, collaboration,
continuous processes

An example
─ 1gbs vs. 100mbs
─ streaming data
─ PAD run mentioned

earlier

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

100mbs

1gbs

sp
ee

du
p

ef
fic

ie
nc

y

nodes engaged

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Page_32

Source of Declining Throughput Gains

Overhead
─ operating system
─ network
─ memory
─ bus speeds
─ CPU speed
─ required serial performance
─ granularity (ratio of processing vs. data passing)

1

1

−

−
=

N
S
N

f N

Overhead can be estimated

f = overhead estimation
N = number of nodes engaged
Sn = speedup for that number of nodes

Amdahl (1967, 1988)
Zomaya (1996)
Raeth (2003)

Page_33

Summary

Developed philosophy for transitioning existing code to networks
Resulted in generic approach
Reusable - not specific to language, OS, platform, algorithm
Dealing with application throughput, not just computational issues
Benefits of the work
─ transition existing software to network environment without re-engineering
─ risk reduction during transition process
─ combines of network architectures with object-oriented concepts

but, does not require OO languages
─ employs independent, yet cooperative, processes
─ results in portable network processes
─ does not require new capital investment to yield significant benefits

Page_34

Biography

Amdahl, G.M. (1967). “Validity of the Single-Processor Approach to Achieving Large Scale Computing Capabilities”. Proc AFIPS, v 30, 483-485.

Amdahl, G.M. (1988). “Limits of Expectation”. Journal of Supercomputer Applications, 2(1), 88-97.

Bailey, D.H. (1991, Jun 11). “Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers”. Technical Report # RNR-
91-020, NASA Ames Research Center, Moffett Field, CA.

Loger, J. (2005, Sep 7). “InnoVision Focus Areas and Challenges”. Former Director of InnoVision within the National Geospatial Intelligence
Agency, briefing to the DARPA-NGA Partnership Industry Workshop, http://dtsn.darpa.mil/ixo/DARPA_NGA/images/Loger-
InnoVision%20Focus%20Areas%20&%20Challenges.pdf.

Morse, S.H. (1994). Practical Parallel Computing. New York, NY: Academic Press.

Raeth, P.G. (2003). Finding Unexpected Events in Staring Continuous-Dwell Sensor Data Streams via Adaptive Prediction. Dissertation presented to
the faculty of Nova Southeastern University.

Raeth, P.G. (2007, Apr). “Improving Throughput for Temporal Target Nomination Using Existing Infrastructure”. Proceedings: Intelligent Computing,
Theory and Applications V; SPIE International Defense and Security Symposium.

Zomaya, A.Y.H. (1996). Parallel and Distributed Computing Handbook. New York, NY: McGraw-Hill.

