1 | /*************************************************************************** |
---|
2 | * |
---|
3 | * Copyright (C) 2001 International Business Machines |
---|
4 | * All rights reserved. |
---|
5 | * |
---|
6 | * This file is part of the GPFS mmfslinux kernel module. |
---|
7 | * |
---|
8 | * Redistribution and use in source and binary forms, with or without |
---|
9 | * modification, are permitted provided that the following conditions |
---|
10 | * are met: |
---|
11 | * |
---|
12 | * 1. Redistributions of source code must retain the above copyright notice, |
---|
13 | * this list of conditions and the following disclaimer. |
---|
14 | * 2. Redistributions in binary form must reproduce the above copyright |
---|
15 | * notice, this list of conditions and the following disclaimer in the |
---|
16 | * documentation and/or other materials provided with the distribution. |
---|
17 | * 3. The name of the author may not be used to endorse or promote products |
---|
18 | * derived from this software without specific prior written |
---|
19 | * permission. |
---|
20 | * |
---|
21 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
---|
22 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
---|
23 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
---|
24 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
25 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
---|
26 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
---|
27 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
---|
28 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
---|
29 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
---|
30 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
31 | * |
---|
32 | *************************************************************************** */ |
---|
33 | /* @(#)22 1.109.1.3 src/avs/fs/mmfs/ts/kernext/gpl-linux/ss.c, mmfs, avs_rgpfs24, rgpfs24s008a 11/30/06 16:55:18 */ |
---|
34 | /* |
---|
35 | * Implementation of shared segment for GPFS daemon and GPFS kernel code. |
---|
36 | * |
---|
37 | * Contents: |
---|
38 | * exp_procfs_version |
---|
39 | * gpfs_proc_export_init |
---|
40 | * gpfs_proc_export_term |
---|
41 | * ss_open |
---|
42 | * ss_release |
---|
43 | * ss_fs_read |
---|
44 | * ss_fs_write |
---|
45 | * ss_fs_ioctl |
---|
46 | * ss_init |
---|
47 | * kxSaveThreadInfo |
---|
48 | * |
---|
49 | * struct ShMemChunkDesc |
---|
50 | * unprotectKernelMemory |
---|
51 | * reprotectKernelMemory |
---|
52 | * InitSharedMemory |
---|
53 | * TermSharedMemory |
---|
54 | * cxiCalcMaxSharedSegment |
---|
55 | * cxiAllocSharedMemory |
---|
56 | * cxiFreeSharedMemory |
---|
57 | * cxiAttachSharedMemory |
---|
58 | * cxiFreeSharedMemory |
---|
59 | * |
---|
60 | */ |
---|
61 | |
---|
62 | #include <Shark-gpl.h> |
---|
63 | |
---|
64 | #include <linux/types.h> |
---|
65 | #include <linux/version.h> |
---|
66 | #ifndef UTS_RELEASE |
---|
67 | #include <linux/utsrelease.h> |
---|
68 | #endif |
---|
69 | #include <linux/kernel.h> |
---|
70 | #include <linux/module.h> |
---|
71 | #include <linux/errno.h> |
---|
72 | #include <linux/slab.h> |
---|
73 | #include <linux/smp_lock.h> |
---|
74 | #include <linux/proc_fs.h> |
---|
75 | #include <linux/mm.h> |
---|
76 | #include <linux/fs.h> |
---|
77 | #include <linux/file.h> |
---|
78 | #include <linux/binfmts.h> |
---|
79 | #include <linux/signal.h> |
---|
80 | #include <linux/vmalloc.h> |
---|
81 | |
---|
82 | #include <asm/pgtable.h> |
---|
83 | #include <asm/pgalloc.h> |
---|
84 | #include <asm/io.h> |
---|
85 | #include <asm/uaccess.h> |
---|
86 | #include <asm/user.h> |
---|
87 | #include <asm/mman.h> |
---|
88 | #include <asm/atomic.h> |
---|
89 | #include <asm/ptrace.h> |
---|
90 | #include <asm/ucontext.h> |
---|
91 | #include <asm/elf.h> |
---|
92 | |
---|
93 | #include <Logger-gpl.h> |
---|
94 | #include <linux2gpfs.h> |
---|
95 | #include <verdep.h> |
---|
96 | #include <arch-gpl.h> |
---|
97 | |
---|
98 | #include <cxiSystem.h> |
---|
99 | #include <cxiIOBuffer.h> |
---|
100 | #include <cxiSharedSeg.h> |
---|
101 | #include <Trace.h> |
---|
102 | |
---|
103 | #if GPFS_ARCH_X86_64 && LINUX_KERNEL_VERSION < 2061600 |
---|
104 | #include <asm/ioctl32.h> |
---|
105 | #if LINUX_KERNEL_VERSION >= 2060507 |
---|
106 | long sys_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg); |
---|
107 | #endif |
---|
108 | #endif |
---|
109 | |
---|
110 | int |
---|
111 | cxiAttachSharedMemory(cxiMemoryMapping_t *mappingP, Boolean isSharedSegment); |
---|
112 | |
---|
113 | #ifdef GPFS_ARCH_POWER |
---|
114 | #define PKMAP_BASE (0xfe000000UL) |
---|
115 | #define VMALLOC_END ioremap_bot |
---|
116 | #endif |
---|
117 | |
---|
118 | const char *gpfs_banner = "GPFS Linux kernel version " UTS_RELEASE "\n"; |
---|
119 | |
---|
120 | SETUP_MODULE_PATH_PARMS; |
---|
121 | |
---|
122 | #ifdef PERF_STATS |
---|
123 | int ioctl_count[MAX_SS_IOCTL_OPS]; |
---|
124 | #endif |
---|
125 | |
---|
126 | |
---|
127 | /* Dynamically assigned major device number for the ioctl interfaces to the |
---|
128 | GPFS kernel modules. This is the /dev/ss0 device. */ |
---|
129 | int GPFSIoctlMajorNumber; |
---|
130 | |
---|
131 | /* Only allow the users with write access or root users */ |
---|
132 | #define CHECK_PERM if (!(file->f_mode & FMODE_WRITE) && !cxiIsSuperUser()) \ |
---|
133 | { \ |
---|
134 | EXIT(0); \ |
---|
135 | return -EPERM; \ |
---|
136 | } |
---|
137 | |
---|
138 | /* Vector table for all routines that can be called with the ss_fs_ioctl. */ |
---|
139 | int (*ss_ioctl_op[MAX_SS_IOCTL_OPS+1])(); |
---|
140 | |
---|
141 | #ifdef SSEG_SWIZZLE_PTRS |
---|
142 | /* virtual MM handlers for vm areas */ |
---|
143 | void ss_vm_open(struct vm_area_struct *area); |
---|
144 | void ss_vm_close(struct vm_area_struct *area); |
---|
145 | #if LINUX_KERNEL_VERSION < 2060000 |
---|
146 | struct page *ss_vm_nopage(struct vm_area_struct *area, unsigned long address, int unused); |
---|
147 | #else |
---|
148 | struct page *ss_vm_nopage(struct vm_area_struct *area, unsigned long address, int *type); |
---|
149 | #endif /* LINUX_KERNEL_VERSION < 2060000 */ |
---|
150 | |
---|
151 | static struct vm_operations_struct ss_vm_ops = { |
---|
152 | open: ss_vm_open, |
---|
153 | close: ss_vm_close, |
---|
154 | nopage: ss_vm_nopage, |
---|
155 | }; |
---|
156 | #endif /* SSEG_SWIZZLE_PTRS */ |
---|
157 | |
---|
158 | /* Add GPFS information to the /proc file system. */ |
---|
159 | int |
---|
160 | exp_procfs_version(char *buffer, char **start, off_t offset, |
---|
161 | int length, int *eof, void *data) |
---|
162 | { |
---|
163 | off_t pos = 0; |
---|
164 | off_t begin = 0; |
---|
165 | int len = 0; |
---|
166 | |
---|
167 | len += sprintf(buffer+len, gpfs_banner); |
---|
168 | *eof = 1; |
---|
169 | |
---|
170 | *start = buffer + (offset - begin); |
---|
171 | len -= (offset - begin); |
---|
172 | if ( len > length ) |
---|
173 | len = length; |
---|
174 | |
---|
175 | return len; |
---|
176 | } |
---|
177 | |
---|
178 | void |
---|
179 | gpfs_proc_export_init(void) |
---|
180 | { |
---|
181 | if (!proc_mkdir("fs/gpfs", 0)) |
---|
182 | return; |
---|
183 | create_proc_read_entry("fs/gpfs/version", 0, 0, exp_procfs_version, NULL); |
---|
184 | } |
---|
185 | |
---|
186 | void |
---|
187 | gpfs_proc_export_term(void) |
---|
188 | { |
---|
189 | remove_proc_entry("fs/gpfs/version", NULL); |
---|
190 | remove_proc_entry("fs/gpfs", NULL); |
---|
191 | |
---|
192 | } |
---|
193 | |
---|
194 | /* Open the character device used for the shared segment. */ |
---|
195 | int |
---|
196 | ss_open(struct inode *inode, struct file *filp) |
---|
197 | { |
---|
198 | |
---|
199 | TRACE2(TRACE_SHARED, 2, TRCID_SS_019, |
---|
200 | "ss_open: file 0x%lX inode 0x%lX\n", |
---|
201 | filp, inode); |
---|
202 | |
---|
203 | MY_MODULE_INCREMENT(); |
---|
204 | |
---|
205 | return 0; /* success */ |
---|
206 | } |
---|
207 | |
---|
208 | |
---|
209 | /* Release/Close the character device used for the shared segment. */ |
---|
210 | int |
---|
211 | ss_release(struct inode *inode, struct file *filp) |
---|
212 | { |
---|
213 | TRACE1(TRACE_SHARED, 2, TRCID_SS_023, |
---|
214 | "ss_release: file 0x%lX\n", filp); |
---|
215 | |
---|
216 | MY_MODULE_DECREMENT(); |
---|
217 | |
---|
218 | return 0; /* success */ |
---|
219 | } |
---|
220 | |
---|
221 | /* Map the shared segment and return the address of the first chunk allocated |
---|
222 | (if buffer is big enough to hold it). */ |
---|
223 | ssize_t |
---|
224 | ss_fs_read(struct file *file, char *buf, size_t nbytes, loff_t *ppos) |
---|
225 | { |
---|
226 | struct inode *inode = file->f_dentry->d_inode; |
---|
227 | unsigned int minor = MINOR(inode->i_rdev); |
---|
228 | cxiMemoryMapping_t mapping; |
---|
229 | int rc; |
---|
230 | |
---|
231 | TRACE1(TRACE_SHARED, 2, TRCID_SS_059, "ss_fs_read: called 0x%lX\n", nbytes); |
---|
232 | /* BKL is not held at entry */ |
---|
233 | |
---|
234 | if (minor != 0) |
---|
235 | return -ENODEV; |
---|
236 | |
---|
237 | /* Only allow the users with write access or root users */ |
---|
238 | if (!(file->f_mode & FMODE_WRITE) && !cxiIsSuperUser()) |
---|
239 | return -EPERM; |
---|
240 | |
---|
241 | InitMemoryMapping(&mapping); |
---|
242 | |
---|
243 | /* Map the shared memory */ |
---|
244 | rc = cxiAttachSharedMemory(&mapping, true); |
---|
245 | if (rc) |
---|
246 | return -rc; |
---|
247 | |
---|
248 | /* If user buffer is big enough, copy base address of segment there */ |
---|
249 | if (nbytes >= sizeof(mapping.vaddr)) |
---|
250 | { |
---|
251 | rc = cxiCopyOut((char *)&mapping.vaddr, buf, sizeof(mapping.vaddr)); |
---|
252 | if (rc) |
---|
253 | return -EFAULT; |
---|
254 | } |
---|
255 | return 0; |
---|
256 | } |
---|
257 | |
---|
258 | /* Was used for debugging. */ |
---|
259 | ssize_t |
---|
260 | ss_fs_write(struct file *file, const char *buf, size_t nbytes, loff_t *ppos) |
---|
261 | { |
---|
262 | /* Only allow the users with write access or root users */ |
---|
263 | if (!(file->f_mode & FMODE_WRITE) && !cxiIsSuperUser()) |
---|
264 | return -EPERM; |
---|
265 | |
---|
266 | TRACE1(TRACE_SHARED, 0, TRCID_SS_065, "ss_fs_write: called 0x%lX\n", nbytes); |
---|
267 | /* BKL is not held at entry */ |
---|
268 | |
---|
269 | return -EINVAL; |
---|
270 | } |
---|
271 | |
---|
272 | #ifdef PERF_STATS |
---|
273 | int kxNoOp(int op1, int op2) |
---|
274 | { |
---|
275 | int i; |
---|
276 | |
---|
277 | if (op1 == 1) // reset all counters |
---|
278 | { |
---|
279 | for (i = 0; i < MAX_SS_IOCTL_OPS; i++) |
---|
280 | ioctl_count[i] = 0; |
---|
281 | } |
---|
282 | if (op2 > 0 && op2 < MAX_SS_IOCTL_OPS) |
---|
283 | return ioctl_count[op2]; // return the requested counter |
---|
284 | |
---|
285 | return 0; |
---|
286 | } |
---|
287 | #endif |
---|
288 | |
---|
289 | #if GPFS_ARCH_X86_64 && LINUX_KERNEL_VERSION >= 2061600 |
---|
290 | long ss_fs_compat_ioctl(struct file *file, unsigned int op, unsigned long kx_args) |
---|
291 | { |
---|
292 | int rc; |
---|
293 | TRACE2(TRACE_KSVFS, 9, TRCID_SS_DMAPI_COMPAT_ENTER, |
---|
294 | "Entering ss_fs_compat_ioctl: called me with op = %d (%s)", op, kxOp_tostring(op)); |
---|
295 | |
---|
296 | if (ss_ioctl_op[0] != 0) |
---|
297 | { |
---|
298 | /* unlock_kernel();*/ |
---|
299 | rc = ss_ioctl_op[0](op, kx_args); |
---|
300 | /*lock_kernel();*/ |
---|
301 | } |
---|
302 | else |
---|
303 | rc = -1; |
---|
304 | |
---|
305 | TRACE1(TRACE_KSVFS, 9, TRCID_SS_DMAPI_COMPAT_EXIT, |
---|
306 | "Leaving ss_fs_compat_ioctl with rc = %d.", rc); |
---|
307 | |
---|
308 | return rc; |
---|
309 | |
---|
310 | } |
---|
311 | #endif |
---|
312 | |
---|
313 | /* Shared segment and other ioctl calls to the kernel code. */ |
---|
314 | int |
---|
315 | ss_fs_ioctl(struct inode *inode, struct file *file, |
---|
316 | unsigned int op, unsigned long kx_args) |
---|
317 | { |
---|
318 | int len, rc; |
---|
319 | char buf[512]; |
---|
320 | struct kxArgs args_cp; |
---|
321 | struct kxArgs *args = (struct kxArgs *)kx_args; |
---|
322 | |
---|
323 | ENTER(0); |
---|
324 | if (op == kxtraceit) |
---|
325 | { |
---|
326 | CHECK_PERM; |
---|
327 | |
---|
328 | rc = cxiCopyIn((char*)args, (char*)&args_cp, sizeof(args_cp)); |
---|
329 | if (rc != 0) |
---|
330 | goto minus1; |
---|
331 | |
---|
332 | len = 3; |
---|
333 | strncpy(buf, KERN_NOTICE, len); // KERN_NOTICE = "<5>" |
---|
334 | len += sprintf(buf+len, "dp %X:%d:", cxiGetThreadId(), args_cp.arg3); |
---|
335 | |
---|
336 | rc = cxiCopyIn((char*)args_cp.arg2, buf+len, args_cp.arg1+1); |
---|
337 | if (rc != 0) |
---|
338 | goto minus1; |
---|
339 | |
---|
340 | printk(buf); |
---|
341 | EXIT(0); |
---|
342 | return 0; |
---|
343 | } |
---|
344 | |
---|
345 | TRACE5(TRACE_KSVFS, 15, TRCID_SS_075, |
---|
346 | "ss_fs_ioctl: op %d opAddr 0x%lX args 0x%lX inode 0x%lX file 0x%lX\n", |
---|
347 | op, ss_ioctl_op[op], kx_args, inode, file); |
---|
348 | /* BKL is held at entry */ |
---|
349 | |
---|
350 | #ifdef PERF_STATS |
---|
351 | if (op > 0 && op < MAX_SS_IOCTL_OPS) |
---|
352 | ioctl_count[op]++; |
---|
353 | #endif |
---|
354 | |
---|
355 | switch (op) |
---|
356 | { |
---|
357 | #ifdef GPFS_ARCH_POWER |
---|
358 | case CoreDump: |
---|
359 | CHECK_PERM; |
---|
360 | rc = cxiCopyIn((char*)args, (char*)&args_cp, sizeof(args_cp)); |
---|
361 | if (rc != 0) |
---|
362 | goto minus1; |
---|
363 | rc = kxCoreDump((long)args_cp.arg1, (void *)args_cp.arg2, |
---|
364 | (struct ucontext *)args_cp.arg3, (char *)args_cp.arg4); |
---|
365 | break; |
---|
366 | #endif |
---|
367 | case saveThreadInfo: |
---|
368 | CHECK_PERM; |
---|
369 | rc = cxiCopyIn((char*)args, (char*)&args_cp, sizeof(args_cp)); |
---|
370 | if (rc != 0) |
---|
371 | goto minus1; |
---|
372 | rc = kxSaveThreadInfo(args_cp.arg1, (void *)args_cp.arg2); |
---|
373 | break; |
---|
374 | |
---|
375 | case GetPrivLevel: |
---|
376 | CHECK_PERM; |
---|
377 | rc = get_privilege_level(); |
---|
378 | break; |
---|
379 | |
---|
380 | case SetPrivLevel: |
---|
381 | CHECK_PERM; |
---|
382 | rc = set_privilege_level(kx_args); |
---|
383 | break; |
---|
384 | |
---|
385 | case MapPrivate: |
---|
386 | { |
---|
387 | char *outAddr; |
---|
388 | |
---|
389 | CHECK_PERM; |
---|
390 | rc = cxiCopyIn((char*)args, (char *)&args_cp, sizeof(args_cp)); |
---|
391 | if (rc != 0) |
---|
392 | goto minus1; |
---|
393 | |
---|
394 | rc = kxMapPrivate((char *)args_cp.arg1, (unsigned long)args_cp.arg2, |
---|
395 | (unsigned long)args_cp.arg3, &outAddr); |
---|
396 | if (rc == 0) |
---|
397 | rc = cxiCopyOut((char*)&outAddr, (char*)args_cp.arg4, sizeof(char*)); |
---|
398 | |
---|
399 | if (rc != 0) |
---|
400 | rc = -EFAULT; |
---|
401 | break; |
---|
402 | } |
---|
403 | |
---|
404 | case GetTimeOfDay: |
---|
405 | { |
---|
406 | cxiTimeStruc_t ts; |
---|
407 | |
---|
408 | rc = cxiGetTOD(&ts); |
---|
409 | if (rc == 0) |
---|
410 | rc = cxiCopyOut((char*)&ts, (char*)kx_args, sizeof(cxiTimeStruc_t)); |
---|
411 | |
---|
412 | if (rc != 0) |
---|
413 | rc = -EFAULT; |
---|
414 | break; |
---|
415 | } |
---|
416 | |
---|
417 | #ifdef PERF_STATS |
---|
418 | case noOp: |
---|
419 | rc = cxiCopyIn((char*)args, (char*)&args_cp, sizeof(args_cp)); |
---|
420 | if (rc != 0) |
---|
421 | break; |
---|
422 | if (args_cp.arg1 == 0 && args_cp.arg2 == 0) |
---|
423 | { /* continue to the real noop kxNoOp in ssioctl.C */ } |
---|
424 | else |
---|
425 | { |
---|
426 | rc = kxNoOp((int)args_cp.arg1, (int)args_cp.arg2); |
---|
427 | break; |
---|
428 | } |
---|
429 | #endif |
---|
430 | |
---|
431 | default: |
---|
432 | TRACE1(TRACE_KSVFS, 9, TRCID_SS_077, |
---|
433 | "ss_fs_ioctl: invoking ss_ioctl_op %d\n", op); |
---|
434 | if (ss_ioctl_op[0] != 0) |
---|
435 | { |
---|
436 | unlock_kernel(); |
---|
437 | rc = ss_ioctl_op[0](op, kx_args); |
---|
438 | lock_kernel(); |
---|
439 | } |
---|
440 | else |
---|
441 | goto minus1; |
---|
442 | break; |
---|
443 | } |
---|
444 | EXIT(0); |
---|
445 | return rc; |
---|
446 | |
---|
447 | minus1: |
---|
448 | EXIT(0); |
---|
449 | return -1; |
---|
450 | } |
---|
451 | |
---|
452 | #ifdef SSEG_SWIZZLE_PTRS |
---|
453 | extern int ss_fs_mmap(struct file *file, struct vm_area_struct *vma); |
---|
454 | #endif |
---|
455 | |
---|
456 | /* The other operations, not in the following list, for the device come from |
---|
457 | the bare device. */ |
---|
458 | struct file_operations ss_fops = |
---|
459 | { |
---|
460 | read: ss_fs_read, |
---|
461 | write: ss_fs_write, |
---|
462 | ioctl: ss_fs_ioctl, |
---|
463 | #ifdef SSEG_SWIZZLE_PTRS |
---|
464 | mmap: ss_fs_mmap, |
---|
465 | #endif |
---|
466 | open: ss_open, |
---|
467 | release: ss_release, |
---|
468 | #if GPFS_ARCH_X86_64 && LINUX_KERNEL_VERSION >= 2061600 |
---|
469 | compat_ioctl: ss_fs_compat_ioctl, |
---|
470 | #endif |
---|
471 | }; |
---|
472 | |
---|
473 | #ifdef API_32BIT |
---|
474 | #ifdef GPFS_ARCH_X86_64 |
---|
475 | |
---|
476 | /* Note that these 32-bit ioctl functions are not needed for ia64; these |
---|
477 | routines just call the standard 64-bit ioctl. */ |
---|
478 | static int tsstat32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
479 | { |
---|
480 | DBGASSERT(cmd == Stat); |
---|
481 | return sys_ioctl(fd,cmd,ptr); |
---|
482 | } |
---|
483 | static int tsfstat32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
484 | { |
---|
485 | DBGASSERT(cmd == Fstat); |
---|
486 | return sys_ioctl(fd,cmd,ptr); |
---|
487 | } |
---|
488 | static int tsfattr32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
489 | { |
---|
490 | DBGASSERT(cmd == Fattr); |
---|
491 | return sys_ioctl(fd,cmd,ptr); |
---|
492 | } |
---|
493 | static int tsfsattr32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
494 | { |
---|
495 | DBGASSERT(cmd == FsAttr); |
---|
496 | return sys_ioctl(fd,cmd,ptr); |
---|
497 | } |
---|
498 | static int tsattr32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
499 | { |
---|
500 | DBGASSERT(cmd == Attr); |
---|
501 | return sys_ioctl(fd,cmd,ptr); |
---|
502 | } |
---|
503 | static int tsgetacl32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
504 | { |
---|
505 | DBGASSERT(cmd == GetACL); |
---|
506 | return sys_ioctl(fd,cmd,ptr); |
---|
507 | } |
---|
508 | static int tsputacl32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
509 | { |
---|
510 | DBGASSERT(cmd == PutACL); |
---|
511 | return sys_ioctl(fd,cmd,ptr); |
---|
512 | } |
---|
513 | #ifdef DMAPI |
---|
514 | static int kxDmApiCall32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
515 | { |
---|
516 | DBGASSERT(cmd == DmApiCall); |
---|
517 | return sys_ioctl(fd,cmd,ptr); |
---|
518 | } |
---|
519 | #endif /* DMAPI */ |
---|
520 | |
---|
521 | #ifdef GPFS_QUOTACTL |
---|
522 | static int kxQuotactl32(unsigned fd, unsigned cmd, unsigned long ptr, struct file * filp) |
---|
523 | { |
---|
524 | DBGASSERT(cmd == Quotactl); |
---|
525 | return sys_ioctl(fd,cmd,ptr); |
---|
526 | } |
---|
527 | #endif |
---|
528 | #endif /* GPFS_ARCH_X86_64 */ |
---|
529 | |
---|
530 | /* Most 64-bit architectures have a separate interface where 32-bit ioctl |
---|
531 | command numbers / routines must be registered (not necessary for ia64). |
---|
532 | At some point we may need to modify our command numbers (currently |
---|
533 | use kxOps for number field) to use both the type / magic number |
---|
534 | and number field (ie, _IOWR('G', ) instead of current implicit _IORW(0, )) |
---|
535 | if a command number collision occurs between gpfs and a new |
---|
536 | device driver. The 32-bit ioctl implementation only |
---|
537 | uses a hash table (and not a driver specific function pointer like ioctl |
---|
538 | from file_operations ... something like ioctl32 would be ideal or just |
---|
539 | passing this to sys_ioctl like is done on ia64 platform), |
---|
540 | so a collision may occur here someday. Curently not very many drivers |
---|
541 | provide 32-bit ioctl calls and only the entries from 0x0 to 0x1F are used |
---|
542 | with magic number 0, ie _IOWR(0,0) to _IOWR(0,1F), while our external API |
---|
543 | commands are in the range of 53-59 (0x35-0x3b) ... although the limited |
---|
544 | ioctl32 hash table size actually makes collisions much more likely. |
---|
545 | Note that /usr/src/linux/Documentation/ioctl-number.txt keeps track of |
---|
546 | the registered blocks used by drivers. */ |
---|
547 | void |
---|
548 | gpfs_reg_ioctl32() |
---|
549 | { |
---|
550 | int rc = 0; |
---|
551 | /* TO DO: eventually add 32-bit API for PPC64? */ |
---|
552 | #if GPFS_ARCH_X86_64 && LINUX_KERNEL_VERSION < 2061600 |
---|
553 | rc = register_ioctl32_conversion(Stat, tsstat32); |
---|
554 | rc |= register_ioctl32_conversion(Fstat, tsfstat32); |
---|
555 | rc |= register_ioctl32_conversion(Fattr, tsfattr32); |
---|
556 | rc |= register_ioctl32_conversion(FsAttr, tsfsattr32); |
---|
557 | rc |= register_ioctl32_conversion(Attr, tsattr32); |
---|
558 | rc |= register_ioctl32_conversion(GetACL, tsgetacl32); |
---|
559 | rc |= register_ioctl32_conversion(PutACL, tsputacl32); |
---|
560 | #ifdef DMAPI |
---|
561 | rc |= register_ioctl32_conversion(DmApiCall, kxDmApiCall32); |
---|
562 | #endif /* DMAPI */ |
---|
563 | #ifdef GPFS_QUOTACTL |
---|
564 | rc |= register_ioctl32_conversion(Quotactl, kxQuotactl32); |
---|
565 | #endif /* GPFS_QUOTACTL */ |
---|
566 | |
---|
567 | if (rc) |
---|
568 | printk("gpfs_reg_ioctl32: Error in registering ioctl32\n"); |
---|
569 | |
---|
570 | #endif /* GPFS_ARCH_X86_64 */ |
---|
571 | } |
---|
572 | |
---|
573 | void |
---|
574 | gpfs_unreg_ioctl32() |
---|
575 | { |
---|
576 | int rc = 0; |
---|
577 | /* TO DO: eventually add 32-bit API for PPC64? */ |
---|
578 | #if GPFS_ARCH_X86_64 && LINUX_KERNEL_VERSION < 2061600 |
---|
579 | rc = unregister_ioctl32_conversion(Stat); |
---|
580 | rc |= unregister_ioctl32_conversion(Fstat); |
---|
581 | rc |= unregister_ioctl32_conversion(Fattr); |
---|
582 | rc |= unregister_ioctl32_conversion(FsAttr); |
---|
583 | rc |= unregister_ioctl32_conversion(Attr); |
---|
584 | rc |= unregister_ioctl32_conversion(GetACL); |
---|
585 | rc |= unregister_ioctl32_conversion(PutACL); |
---|
586 | #ifdef DMAPI |
---|
587 | rc |= unregister_ioctl32_conversion(DmApiCall); |
---|
588 | #endif /* DMAPI */ |
---|
589 | #ifdef GPFS_QUOTACTL |
---|
590 | rc |= unregister_ioctl32_conversion(Quotactl); |
---|
591 | #endif /* GPFS_QUOTACTL */ |
---|
592 | |
---|
593 | if (rc) |
---|
594 | printk("unregister_ioctl32_conversion: Error in unregistering ioctl32\n"); |
---|
595 | |
---|
596 | #endif /* GPFS_ARCH_X86_64 */ |
---|
597 | } |
---|
598 | |
---|
599 | #endif /* API_32BIT */ |
---|
600 | |
---|
601 | /* Initialization of the character device used for the shared segment |
---|
602 | interfaces and other ioctl calls to the kernel code. */ |
---|
603 | int |
---|
604 | ss_init() |
---|
605 | { |
---|
606 | int major; |
---|
607 | |
---|
608 | GPFSIoctlMajorNumber = 0; |
---|
609 | major = register_chrdev(0, "ss", &ss_fops); |
---|
610 | |
---|
611 | if (major < 0) |
---|
612 | { |
---|
613 | TRACE1(TRACE_SHARED, 2, TRCID_SS_081, |
---|
614 | "ss_init: unable to get ss0 major rc %d\n", major); |
---|
615 | return -1; |
---|
616 | } |
---|
617 | |
---|
618 | GPFSIoctlMajorNumber = major; |
---|
619 | TRACE1(TRACE_SHARED, 2, TRCID_SS_083, |
---|
620 | "ss_init: module loaded ss0 major %d\n", GPFSIoctlMajorNumber); |
---|
621 | |
---|
622 | return 0; |
---|
623 | } |
---|
624 | |
---|
625 | /* Management of storage shared between the GPFS daemon and the mmfslinux |
---|
626 | kernel module. Chunks of memory are allocated on demand by the |
---|
627 | kxAllocSharedKernelMemory call, and are then suballocated by GPFS. To |
---|
628 | allow free use of pointers, all of this memory is addressed using the |
---|
629 | same virtual addresses whether it is being accessed from the daemon |
---|
630 | process or from a process in kernel mode. Setting up this addressibility |
---|
631 | requires modifying the protection bits in the Linux page table. For |
---|
632 | historical reasons dating to the implementation of GPFS on AIX, the |
---|
633 | storage shared between the GPFS daemon process and the kernel is |
---|
634 | frequently referred to collectively as "the shared segment". |
---|
635 | Note that when pointer swizzling is utilized (via SSEG_PTR_SWIZZLE), the |
---|
636 | virtual address for the daemon process and kernel is no longer common; |
---|
637 | the page tables are not fiddled with in this situation and a page fault |
---|
638 | handler is utilized instead. */ |
---|
639 | |
---|
640 | /* Description of each allocated chunk. Allocated chunks are linked |
---|
641 | together from ChunkListHead. */ |
---|
642 | struct ShMemChunkDesc |
---|
643 | { |
---|
644 | struct list_head chunkList; /* list linkage */ |
---|
645 | char* vaddrP; /* virtual address of beginning of chunk */ |
---|
646 | int len; /* length of chunk */ |
---|
647 | #ifdef SSEG_SWIZZLE_PTRS |
---|
648 | char* usrvaddrP; /* corresponding user address from mmap */ |
---|
649 | #endif |
---|
650 | }; |
---|
651 | struct list_head ChunkListHead; |
---|
652 | |
---|
653 | /* Number of chunks and total size of all chunks */ |
---|
654 | int NVMallocChunks; |
---|
655 | int TotalVMallocBytes; |
---|
656 | |
---|
657 | /* Address of the first chunk allocated. This value gets returned by |
---|
658 | cxiMapAllSharedKernelMemory as the base of the GPFS shared segment. */ |
---|
659 | char* FirstVMallocChunkP; |
---|
660 | |
---|
661 | /* Maximum total bytes to allocate, as computed by cxiCalcMaxSharedSegment */ |
---|
662 | int MaxTotalVMallocBytes; |
---|
663 | |
---|
664 | /* Beginning and end of the area of kernel virtual memory used by |
---|
665 | vmalloc/vfree */ |
---|
666 | UIntPtr VMallocStart; |
---|
667 | UIntPtr VMallocEnd; |
---|
668 | |
---|
669 | /* Minimum size of an allocated chunk */ |
---|
670 | #define MIN_VMALLOC_CHUNK PAGE_SIZE |
---|
671 | |
---|
672 | /* Lock guarding the chunk list */ |
---|
673 | spinlock_t ChunkListLock; |
---|
674 | |
---|
675 | /* Pointer to slab allocator for ShMemChunkDesc's */ |
---|
676 | struct kmem_cache* ChunkCacheP = NULL; |
---|
677 | |
---|
678 | /* Make a range of kernel memory addressible by the current process while |
---|
679 | in user mode */ |
---|
680 | #ifndef SSEG_SWIZZLE_PTRS |
---|
681 | static void |
---|
682 | unprotectKernelMemory(char* vaddrP, int len, Boolean allocating) |
---|
683 | { |
---|
684 | struct mm_struct *mm = current->mm; |
---|
685 | unsigned long vaddr = (unsigned long) vaddrP; |
---|
686 | unsigned long vaddr_start = vaddr; |
---|
687 | pgd_t *pgdP; |
---|
688 | pmd_t *pmdP; |
---|
689 | pte_t *pteP; |
---|
690 | |
---|
691 | /* Change protection for each page in the range */ |
---|
692 | TRACE3N(TRACE_SHARED, 9, TRCID_UNPROT_ENTER, |
---|
693 | "unprotectKernelMemory: vaddr 0x%lX len %d allocating %d\n", |
---|
694 | vaddr, len, allocating); |
---|
695 | while (len > 0) |
---|
696 | { |
---|
697 | /* Access the page to make sure all levels of the page table have been |
---|
698 | created. This this is a kernel address, so page table entries will |
---|
699 | persist once they have been created, since the Linux kernel is not |
---|
700 | pageable. */ |
---|
701 | atomic_read((atomic_t*) vaddrP); |
---|
702 | |
---|
703 | /* Find page table entries for this page */ |
---|
704 | pgdP = PGD_OFFSET(mm, vaddr); |
---|
705 | pmdP = pmd_offset(pgdP, vaddr); |
---|
706 | pteP = PTE_OFFSET(pmdP, vaddr); |
---|
707 | |
---|
708 | #ifdef GPFS_ARCH_I386 |
---|
709 | /* On IA32, set both the pte, and pmd/pgd to allow mmfsd process-level |
---|
710 | * access to the area. Since each process has its own page directory |
---|
711 | * (pgd), an attempt to access one of these unprotected pages will be |
---|
712 | * blocked by the protection bit in that process' pgd. If another process |
---|
713 | * requires access to shared kernel pages, only its pgd need be updated. |
---|
714 | * pmd_t and pte_t are same size and definition. Thus pte_rdprotect() |
---|
715 | * (only available macro that hides differences between Suse/Redhat) |
---|
716 | * is used. |
---|
717 | */ |
---|
718 | DBGASSERT(sizeof(pte_t) == sizeof(pmd_t)); |
---|
719 | set_pte((pte_t *)pmdP, pte_mkread((*(pte_t *)pmdP))); |
---|
720 | if (allocating) |
---|
721 | set_pte(pteP, pte_mkread(*pteP)); |
---|
722 | |
---|
723 | PTE_UNMAP(pteP); |
---|
724 | |
---|
725 | #elif defined(GPFS_ARCH_POWER) || defined(GPFS_ARCH_X86_64) |
---|
726 | // XXX Not implemented |
---|
727 | // pmd_val(*pmdP) = pmd_val(*pmdP) | _PAGE_USER; |
---|
728 | // if (allocating) |
---|
729 | // set_pte(pteP, pte_mkread(*pteP)); |
---|
730 | #elif defined(GPFS_ARCH_IA64) |
---|
731 | /* On IA64, set the protection level of the page when it is created. |
---|
732 | * Nothing to do when allowing access from another process except to |
---|
733 | * set the privilege level of the process. |
---|
734 | */ |
---|
735 | if (allocating) |
---|
736 | pte_val(*pteP) = pte_val(*pteP) | PRIVILEGE_FLAGS; |
---|
737 | #endif |
---|
738 | |
---|
739 | /* Advance to the next page */ |
---|
740 | vaddr += PAGE_SIZE; |
---|
741 | vaddrP += PAGE_SIZE; |
---|
742 | len -= PAGE_SIZE; |
---|
743 | } |
---|
744 | |
---|
745 | /* It is necessary to flush the TLB entries for IA64 to propagate the |
---|
746 | * pte privilege level change. |
---|
747 | */ |
---|
748 | FLUSH_TLB_RANGE(mm, vaddr_start, vaddr); |
---|
749 | } |
---|
750 | #else |
---|
751 | static void |
---|
752 | unprotectKernelMemory(char* vaddrP, int len, Boolean allocating) |
---|
753 | { |
---|
754 | /* do nothing when pointer swizzling */ |
---|
755 | return; |
---|
756 | } |
---|
757 | #endif /* !SSEG_SWIZZLE_PTRS */ |
---|
758 | |
---|
759 | /* Make a range of kernel memory no longer addressible by user processes |
---|
760 | while in user mode. Called just before freeing the memory. */ |
---|
761 | #ifndef SSEG_SWIZZLE_PTRS |
---|
762 | static void |
---|
763 | reprotectKernelMemory(char* vaddrP, int len) |
---|
764 | { |
---|
765 | struct mm_struct *mm = current->mm; |
---|
766 | unsigned long vaddr = (unsigned long) vaddrP; |
---|
767 | unsigned long vaddr_start = vaddr; |
---|
768 | pgd_t *pgdP; |
---|
769 | pmd_t *pmdP; |
---|
770 | pte_t *pteP; |
---|
771 | |
---|
772 | /* Change protection for each page in the range */ |
---|
773 | ENTER(0); |
---|
774 | TRACE2(TRACE_SHARED, 4, TRCID_REPROT_ENTER, |
---|
775 | "reprotectKernelMemory: vaddr 0x%lX len %d\n", |
---|
776 | vaddr, len); |
---|
777 | while (len > 0) |
---|
778 | { |
---|
779 | /* Access the page to make sure all levels of the page table have been |
---|
780 | created. This this is a kernel address, so page table entries will |
---|
781 | persist once they have been created, since the Linux kernel is not |
---|
782 | pageable. */ |
---|
783 | atomic_read((atomic_t*) vaddrP); |
---|
784 | |
---|
785 | /* Find page table entries for this page */ |
---|
786 | pgdP = PGD_OFFSET(mm, vaddr); |
---|
787 | pmdP = pmd_offset(pgdP, vaddr); |
---|
788 | pteP = PTE_OFFSET(pmdP, vaddr); |
---|
789 | |
---|
790 | #ifdef GPFS_ARCH_I386 |
---|
791 | /* On IA32, reset the pte and pmd to disallow process-level access.*/ |
---|
792 | set_pte((pte_t *)pmdP, pte_rdprotect((*(pte_t *)pmdP))); // see unprotect |
---|
793 | set_pte(pteP, pte_rdprotect(*pteP)); |
---|
794 | |
---|
795 | #elif defined(GPFS_ARCH_POWER) || defined(GPFS_ARCH_X86_64) |
---|
796 | // XXX??? not implemented |
---|
797 | |
---|
798 | #elif defined(GPFS_ARCH_IA64) |
---|
799 | /* On IA64, reset the protection level of the page. */ |
---|
800 | pte_val(*pteP) = (pte_val(*pteP) & ~_PAGE_PL_MASK) | _PAGE_PL_0; |
---|
801 | #endif |
---|
802 | |
---|
803 | PTE_UNMAP(pteP); |
---|
804 | |
---|
805 | /* Advance to the next page */ |
---|
806 | vaddr += PAGE_SIZE; |
---|
807 | vaddrP += PAGE_SIZE; |
---|
808 | len -= PAGE_SIZE; |
---|
809 | } |
---|
810 | |
---|
811 | /* It is necessary to flush the TLB entries for IA64 to propagate the |
---|
812 | * pte privilege level change. |
---|
813 | */ |
---|
814 | FLUSH_TLB_RANGE(mm, vaddr_start, vaddr); |
---|
815 | EXIT(0); |
---|
816 | } |
---|
817 | #else |
---|
818 | static void |
---|
819 | reprotectKernelMemory(char* vaddrP, int len) |
---|
820 | { |
---|
821 | /* do nothing when pointer swizzling */ |
---|
822 | return; |
---|
823 | } |
---|
824 | #endif /* !SSEG_SWIZZLE_PTRS */ |
---|
825 | |
---|
826 | |
---|
827 | /* Initialize the code that manages shared memory */ |
---|
828 | void |
---|
829 | InitSharedMemory() |
---|
830 | { |
---|
831 | ENTER(0); |
---|
832 | TRACE2(TRACE_SHARED, 1, TRCID_SHKERN_INIT, |
---|
833 | "InitSharedMemory called. VMALLOC_START 0x%lX VMALLOC_END 0x%lX\n", |
---|
834 | VMALLOC_START, VMALLOC_END); |
---|
835 | |
---|
836 | VMallocStart = (UIntPtr)VMALLOC_START; |
---|
837 | VMallocEnd = (UIntPtr)VMALLOC_END; |
---|
838 | |
---|
839 | spin_lock_init(&ChunkListLock); |
---|
840 | |
---|
841 | /* Create a slab allocator for ShMemChunkDesc objects */ |
---|
842 | ChunkCacheP = kmem_cache_create("ShMemChunkDesc", |
---|
843 | sizeof(struct ShMemChunkDesc), |
---|
844 | 0 /* offset */, |
---|
845 | 0 /* flags */, |
---|
846 | NULL /* ctor */, |
---|
847 | NULL /* dtor */); |
---|
848 | if (ChunkCacheP == NULL) |
---|
849 | cxiPanic("Cannot create ShMemChunkDesc cache\n"); |
---|
850 | |
---|
851 | /* Empty the chunk list */ |
---|
852 | INIT_LIST_HEAD(&ChunkListHead); |
---|
853 | EXIT(0); |
---|
854 | } |
---|
855 | |
---|
856 | |
---|
857 | /* Compute how large the total size shared segment |
---|
858 | is allowed to grow, based on a desired size. A value of 0 for |
---|
859 | desiredBytes means to compute the default maximum size. */ |
---|
860 | int |
---|
861 | cxiCalcMaxSharedSegment(int desiredBytes, int* actualBytesP) |
---|
862 | { |
---|
863 | Int64 physMemSize; |
---|
864 | Int64 effPhysMemSize; |
---|
865 | UIntPtr minAllowedSize = 16*1024*1024; |
---|
866 | UIntPtr maxAllowedSize = MAX_SSEG_MAPPINGS*1024*1024; |
---|
867 | UIntPtr actualBytes; |
---|
868 | char* p; |
---|
869 | UIntPtr vmUsed; |
---|
870 | UIntPtr vmRegionReserved; |
---|
871 | UIntPtr maxBytes; |
---|
872 | |
---|
873 | /* If an explicit number of desired bytes was given, use that value. |
---|
874 | Otherwise, if no number of desired bytes was given (or a value |
---|
875 | smaller than the minimum possible was specified) compute the size based |
---|
876 | on the size of real memory. The size computed is a fixed fraction of |
---|
877 | real memory (only the first 2G on i386). */ |
---|
878 | ENTER(0); |
---|
879 | physMemSize = (Int64)num_physpages * PAGE_SIZE; |
---|
880 | #ifdef GPFS_ARCH_I386 |
---|
881 | effPhysMemSize = MIN(physMemSize, (Int64)0x80000000); |
---|
882 | #else |
---|
883 | effPhysMemSize = physMemSize; |
---|
884 | #endif |
---|
885 | |
---|
886 | if (desiredBytes > 0) |
---|
887 | actualBytes = desiredBytes; |
---|
888 | else |
---|
889 | actualBytes = effPhysMemSize/16; |
---|
890 | |
---|
891 | actualBytes = MAX(actualBytes, minAllowedSize); |
---|
892 | |
---|
893 | /* Compute an approximation of how many bytes are already used in the |
---|
894 | vmalloc region. The variables needed to compute this exactly are not |
---|
895 | exported from the kernel. If we vmalloc a single page area and see how |
---|
896 | far the allocated area is from the beginning of the vmalloc region, we |
---|
897 | have at least a lower bound on the amount of vmalloc storage already |
---|
898 | used. If there have been no vfrees, this will yield an accurate |
---|
899 | answer. */ |
---|
900 | p = vmalloc(PAGE_SIZE); |
---|
901 | if (p == NULL) |
---|
902 | vmUsed = VMallocEnd - VMallocStart; |
---|
903 | else |
---|
904 | { |
---|
905 | vmUsed = (UIntPtr)p - VMallocStart; |
---|
906 | vfree(p); |
---|
907 | } |
---|
908 | |
---|
909 | /* Make sure the actual maximum fits within the vmalloc region, taking |
---|
910 | into account memory already used and leaving a reserved area for other |
---|
911 | vmallocs. */ |
---|
912 | vmRegionReserved = 16*1024*1024; |
---|
913 | maxBytes = (VMallocEnd-VMallocStart) - (vmUsed+vmRegionReserved); |
---|
914 | actualBytes = MIN(actualBytes, maxBytes); |
---|
915 | |
---|
916 | /* Make sure the actual maximum does not exceed the maximum possible */ |
---|
917 | actualBytes = MIN(actualBytes, maxAllowedSize); |
---|
918 | |
---|
919 | /* Make sure the actual maximum is less than half of real memory */ |
---|
920 | actualBytes = MIN(actualBytes, effPhysMemSize/2); |
---|
921 | |
---|
922 | /* Round actual maximum down to a multiple of the page size */ |
---|
923 | actualBytes = (actualBytes/PAGE_SIZE) * PAGE_SIZE; |
---|
924 | |
---|
925 | /* If actual maximum is less than the minimum allowed, return 0 */ |
---|
926 | if (actualBytes < minAllowedSize) |
---|
927 | actualBytes = 0; |
---|
928 | |
---|
929 | /* Return result */ |
---|
930 | TRACE5(TRACE_SHARED, 1, TRCID_CALC_MAX_SHARED, |
---|
931 | "cxiCalcMaxSharedSegment: actualBytes 0x%lX desiredBytes %d " |
---|
932 | "physMemSize 0x%lX vmUsed 0x%lX maxBytes 0x%lX\n", |
---|
933 | actualBytes, desiredBytes, physMemSize, vmUsed, maxBytes); |
---|
934 | |
---|
935 | *actualBytesP = (int)actualBytes; |
---|
936 | MaxTotalVMallocBytes = (int)actualBytes; |
---|
937 | |
---|
938 | EXIT(0); |
---|
939 | return 0; |
---|
940 | } |
---|
941 | |
---|
942 | /* Acquire additional kernel memory that is mapped to user space when |
---|
943 | * using SSEG_SWIZZLE_PTRS (different virtual address between kernel and |
---|
944 | * daemon); otherwise allocated memory uses the same virtual address |
---|
945 | * for both kernel code and the GPFS daemon. Will get at least minBytes. |
---|
946 | * Returns the starting virtual address of the area and its actual length. |
---|
947 | */ |
---|
948 | int |
---|
949 | cxiAllocSharedMemory(cxiMemoryMapping_t *mappingP, Boolean isSharedSegment) |
---|
950 | { |
---|
951 | int rc = 0; |
---|
952 | int code = 0; |
---|
953 | char *vaddrP; |
---|
954 | struct ShMemChunkDesc* chunkP = NULL; |
---|
955 | int minBytes = mappingP->kBytes * 1024; |
---|
956 | int actualBytes; |
---|
957 | pgprot_t prot; |
---|
958 | #if defined(GPFS_ARCH_X86_64) && !defined(SSEG_SWIZZLE_PTRS) |
---|
959 | pml4_t* pml4P; |
---|
960 | #endif |
---|
961 | |
---|
962 | /* On linux we only allocate the shared segment in this manner */ |
---|
963 | ENTER(0); |
---|
964 | LOGASSERT(isSharedSegment == true); |
---|
965 | |
---|
966 | /* Compute actual number of bytes to allocate */ |
---|
967 | if (minBytes <= MIN_VMALLOC_CHUNK) |
---|
968 | actualBytes = MIN_VMALLOC_CHUNK; |
---|
969 | else |
---|
970 | actualBytes = ((minBytes + PAGE_SIZE - 1) / PAGE_SIZE) * PAGE_SIZE; |
---|
971 | |
---|
972 | TRACE2(TRACE_SHARED, 5, TRCID_ALLOC_SHARED_VMALLOC, |
---|
973 | "cxiAllocSharedMemory: vmalloc %d minBytes %d\n", |
---|
974 | actualBytes, minBytes); |
---|
975 | |
---|
976 | /* Return failure if this allocation would put us over the limit */ |
---|
977 | if (TotalVMallocBytes + actualBytes > MaxTotalVMallocBytes) |
---|
978 | { |
---|
979 | code = 1; |
---|
980 | rc = -ENOMEM; |
---|
981 | goto xerror; |
---|
982 | } |
---|
983 | |
---|
984 | /* Get a descriptor for the memory to be allocated */ |
---|
985 | chunkP = (struct ShMemChunkDesc*) kmem_cache_alloc(ChunkCacheP, GFP_KERNEL); |
---|
986 | if (chunkP == NULL) |
---|
987 | { |
---|
988 | code = 2; |
---|
989 | rc = -ENOMEM; |
---|
990 | goto xerror; |
---|
991 | } |
---|
992 | |
---|
993 | /* Allocate memory |
---|
994 | * ?? Instead of calling vmalloc here, we could also do something like: |
---|
995 | * pgprot_t prot; |
---|
996 | * prot = __pgprot(pgprot_val(PAGE_KERNEL) | _PAGE_USER); |
---|
997 | * vaddrP = __vmalloc(actualBytes, GFP_KERNEL | __GFP_HIGHMEM, prot); |
---|
998 | * |
---|
999 | * This is an expansion of the vmalloc inline function, with _PAGE_USER |
---|
1000 | * added to the protection bits so that the PTE entries will already be set |
---|
1001 | * correctly. However, a call to unprotectKernelMemory would still be |
---|
1002 | * needed to set the protection bits in the PMD entries. |
---|
1003 | * |
---|
1004 | * There is also the possibility here of using __GFP_HIGHMEM instead of |
---|
1005 | * GFP_KERNEL on machines with sufficient high memory. The storage |
---|
1006 | * allocated here will never be used as I/O buffers, so high memory would |
---|
1007 | * be a good place to put it. This would give I/O buffers a greater chance |
---|
1008 | * of being allocated below 1G, reducing the need for bounce buffers to do |
---|
1009 | * I/O. |
---|
1010 | */ |
---|
1011 | #ifndef SSEG_SWIZZLE_PTRS |
---|
1012 | |
---|
1013 | #if defined(GPFS_ARCH_POWER) |
---|
1014 | prot = __pgprot(pgprot_val(PAGE_KERNEL) | _PAGE_USER); |
---|
1015 | vaddrP = __vmalloc(actualBytes, GFP_KERNEL, prot); |
---|
1016 | #elif defined(GPFS_ARCH_X86_64) |
---|
1017 | #define __pml4(x) ((pml4_t) { (x) } ) |
---|
1018 | pml4P = pml4_offset_k(VMALLOC_START); |
---|
1019 | set_pml4(pml4P, __pml4(pml4_val(*pml4P) | _PAGE_USER)); |
---|
1020 | #undef __pml4 |
---|
1021 | prot = __pgprot(pgprot_val(PAGE_KERNEL) | _PAGE_USER | _PAGE_GLOBAL); |
---|
1022 | vaddrP = __vmalloc(actualBytes, GFP_KERNEL, prot); |
---|
1023 | #elif defined(GPFS_ARCH_PPC64) |
---|
1024 | prot = __pgprot(pgprot_val(PAGE_KERNEL) | _PAGE_USER); |
---|
1025 | vaddrP = __vmalloc(actualBytes, GFP_KERNEL, prot); |
---|
1026 | #else |
---|
1027 | vaddrP = vmalloc(actualBytes); |
---|
1028 | #endif |
---|
1029 | |
---|
1030 | #else |
---|
1031 | vaddrP = vmalloc(actualBytes); |
---|
1032 | #endif /* !SSEG_SWIZZLE_PTRS */ |
---|
1033 | if (vaddrP == NULL) |
---|
1034 | { |
---|
1035 | code = 3; |
---|
1036 | rc = -ENOMEM; |
---|
1037 | goto xerror; |
---|
1038 | } |
---|
1039 | |
---|
1040 | #ifdef MALLOC_DEBUG |
---|
1041 | MallocDebugNew(vaddrP, actualBytes, 3); |
---|
1042 | #endif |
---|
1043 | |
---|
1044 | spin_lock(&ChunkListLock); |
---|
1045 | |
---|
1046 | NVMallocChunks += 1; |
---|
1047 | TotalVMallocBytes += actualBytes; |
---|
1048 | |
---|
1049 | /* Remember address of first chunk allocated */ |
---|
1050 | if (NVMallocChunks == 1) |
---|
1051 | FirstVMallocChunkP = vaddrP; |
---|
1052 | |
---|
1053 | /* Fill in chunk descriptor and add it to the proper list */ |
---|
1054 | chunkP->vaddrP = vaddrP; |
---|
1055 | chunkP->len = actualBytes; |
---|
1056 | #ifdef SSEG_SWIZZLE_PTRS |
---|
1057 | chunkP->usrvaddrP = 0; |
---|
1058 | #endif |
---|
1059 | list_add(&chunkP->chunkList, &ChunkListHead); |
---|
1060 | |
---|
1061 | spin_unlock(&ChunkListLock); |
---|
1062 | |
---|
1063 | /* Make memory just allocated addressible by the current process */ |
---|
1064 | unprotectKernelMemory(vaddrP, actualBytes, true); |
---|
1065 | |
---|
1066 | /* Return results */ |
---|
1067 | mappingP->vaddr = vaddrP; |
---|
1068 | mappingP->kBytes = actualBytes / 1024; |
---|
1069 | #ifdef SSEG_SWIZZLE_PTRS |
---|
1070 | mappingP->kvaddr = vaddrP; |
---|
1071 | /* mappingP->vaddr is reset to proper user va in kxAllocSharedMemory */ |
---|
1072 | #endif |
---|
1073 | |
---|
1074 | xerror: |
---|
1075 | if (rc) |
---|
1076 | { |
---|
1077 | InitMemoryMapping(mappingP); |
---|
1078 | |
---|
1079 | if (chunkP) |
---|
1080 | kmem_cache_free(ChunkCacheP, (void*)chunkP); |
---|
1081 | } |
---|
1082 | |
---|
1083 | TRACE4(TRACE_SHARED, 1, TRCID_ALLOC_SHARED_EXIT, |
---|
1084 | "cxiAllocSharedMemory: vaddr 0x%lX kBytes %d rc %d code %d\n", |
---|
1085 | mappingP->vaddr, mappingP->kBytes, rc, code); |
---|
1086 | EXIT(0); |
---|
1087 | return rc; |
---|
1088 | } |
---|
1089 | |
---|
1090 | #ifdef SSEG_SWIZZLE_PTRS |
---|
1091 | /* Record the user address that is associated with the kernel vmalloc |
---|
1092 | address (vmalloc chunk for shared segment). This is needed later on |
---|
1093 | by the page fault handler. |
---|
1094 | This routine is called after allocating the chunk and determining the |
---|
1095 | corresponding user address (used by all user processes mmap'ing |
---|
1096 | this specific shared segment chunk). |
---|
1097 | */ |
---|
1098 | int |
---|
1099 | cxiRecordSharedMemory(cxiMemoryMapping_t *mappingP) |
---|
1100 | { |
---|
1101 | int found = 0; |
---|
1102 | struct ShMemChunkDesc* chunkP = NULL; |
---|
1103 | struct list_head* p; |
---|
1104 | |
---|
1105 | ENTER(0); |
---|
1106 | spin_lock(&ChunkListLock); |
---|
1107 | list_for_each(p, &ChunkListHead) |
---|
1108 | { |
---|
1109 | chunkP = list_entry(p, struct ShMemChunkDesc, chunkList); |
---|
1110 | if (chunkP->vaddrP == mappingP->kvaddr) |
---|
1111 | { |
---|
1112 | chunkP->usrvaddrP = mappingP->vaddr; |
---|
1113 | found = 1; |
---|
1114 | break; |
---|
1115 | } |
---|
1116 | } |
---|
1117 | spin_unlock(&ChunkListLock); |
---|
1118 | |
---|
1119 | EXIT(0); |
---|
1120 | if (!found) |
---|
1121 | return -1; |
---|
1122 | else |
---|
1123 | return 0; |
---|
1124 | } |
---|
1125 | |
---|
1126 | /* Obtain any necessary kernel information for initializing |
---|
1127 | pointer swizzling; currently just grabs vmalloc range info. */ |
---|
1128 | int |
---|
1129 | cxiInitPtrSwizzling(UIntPtr *vmallocStartP, UIntPtr *vmallocEndP) |
---|
1130 | { |
---|
1131 | ENTER(0); |
---|
1132 | |
---|
1133 | *vmallocStartP = (UIntPtr)VMALLOC_START; |
---|
1134 | *vmallocEndP = (UIntPtr)VMALLOC_END; |
---|
1135 | |
---|
1136 | EXIT(0); |
---|
1137 | return 0; |
---|
1138 | } |
---|
1139 | #endif |
---|
1140 | |
---|
1141 | /* Unmap and deallocate all shared segment memory */ |
---|
1142 | int |
---|
1143 | cxiFreeSharedMemory(cxiMemoryMapping_t *mappingP, Boolean isSharedSegment) |
---|
1144 | { |
---|
1145 | struct list_head* firstP; |
---|
1146 | struct ShMemChunkDesc* chunkP; |
---|
1147 | |
---|
1148 | ENTER(0); |
---|
1149 | LOGASSERT(isSharedSegment == true); |
---|
1150 | |
---|
1151 | /* Walk down the list of multi page chunks. Free each one and its |
---|
1152 | * associated chunk descriptor. Drop the list lock while freeing |
---|
1153 | * storage. |
---|
1154 | */ |
---|
1155 | spin_lock(&ChunkListLock); |
---|
1156 | |
---|
1157 | while (!list_empty(&ChunkListHead)) |
---|
1158 | { |
---|
1159 | firstP = ChunkListHead.next; |
---|
1160 | list_del(firstP); |
---|
1161 | |
---|
1162 | chunkP = list_entry(firstP, struct ShMemChunkDesc, chunkList); |
---|
1163 | NVMallocChunks -= 1; |
---|
1164 | TotalVMallocBytes -= chunkP->len; |
---|
1165 | |
---|
1166 | spin_unlock(&ChunkListLock); |
---|
1167 | reprotectKernelMemory(chunkP->vaddrP, chunkP->len); |
---|
1168 | |
---|
1169 | TRACE2(TRACE_SHARED, 4, TRCID_FREEALL_VFREE, |
---|
1170 | "cxiFreeSharedMemory: vaddrP 0x%lX chunkP 0x%lX\n", |
---|
1171 | chunkP->vaddrP, chunkP); |
---|
1172 | |
---|
1173 | vfree(chunkP->vaddrP); |
---|
1174 | #ifdef MALLOC_DEBUG |
---|
1175 | MallocDebugDelete(chunkP->vaddrP); |
---|
1176 | #endif |
---|
1177 | |
---|
1178 | kmem_cache_free(ChunkCacheP, (void*)chunkP); |
---|
1179 | spin_lock(&ChunkListLock); |
---|
1180 | } |
---|
1181 | FirstVMallocChunkP = NULL; |
---|
1182 | spin_unlock(&ChunkListLock); |
---|
1183 | |
---|
1184 | InitMemoryMapping(mappingP); |
---|
1185 | |
---|
1186 | EXIT(0); |
---|
1187 | return 0; |
---|
1188 | } |
---|
1189 | |
---|
1190 | /* Map the shared segment memory into the address |
---|
1191 | * space of the calling process |
---|
1192 | */ |
---|
1193 | int |
---|
1194 | cxiAttachSharedMemory(cxiMemoryMapping_t *mappingP, Boolean isSharedSegment) |
---|
1195 | { |
---|
1196 | struct list_head* p; |
---|
1197 | struct ShMemChunkDesc* chunkP; |
---|
1198 | |
---|
1199 | ENTER(0); |
---|
1200 | LOGASSERT(isSharedSegment == true); |
---|
1201 | |
---|
1202 | /* Walk down the list of allocated chunks. Map each one so that |
---|
1203 | * this process can access it from user space. |
---|
1204 | */ |
---|
1205 | spin_lock(&ChunkListLock); |
---|
1206 | list_for_each(p, &ChunkListHead) |
---|
1207 | { |
---|
1208 | chunkP = list_entry(p, struct ShMemChunkDesc, chunkList); |
---|
1209 | TRACE1N(TRACE_SHARED, 11, TRCID_MAPALL_MULTI, |
---|
1210 | "cxiAttachSharedMemory: chunkP 0x%lX\n", chunkP); |
---|
1211 | |
---|
1212 | /* unprotectKernelMemory has to be called here with 'allocating' |
---|
1213 | * set to 'true', so that mmfsadm can map and access the shared segment |
---|
1214 | * even when the daemon has died and called reprotectKernelMemory |
---|
1215 | */ |
---|
1216 | unprotectKernelMemory(chunkP->vaddrP, chunkP->len, true); |
---|
1217 | } |
---|
1218 | spin_unlock(&ChunkListLock); |
---|
1219 | |
---|
1220 | /* Return address of first chunk allocated; this will be the |
---|
1221 | * base of the GPFS shared segment |
---|
1222 | */ |
---|
1223 | mappingP->vaddr = FirstVMallocChunkP; |
---|
1224 | #ifdef SSEG_SWIZZLE_PTRS |
---|
1225 | mappingP->kvaddr = FirstVMallocChunkP; |
---|
1226 | /* mappingP->vaddr is reset to proper user va in kxAttachSharedMemory */ |
---|
1227 | #endif |
---|
1228 | |
---|
1229 | /* If there were no chunks, return ENOENT */ |
---|
1230 | EXIT(0); |
---|
1231 | return (NVMallocChunks > 0) ? 0 : -ENOENT; |
---|
1232 | } |
---|
1233 | |
---|
1234 | int |
---|
1235 | cxiDetachSharedMemory(cxiMemoryMapping_t *mappingP, Boolean isSharedSegment) |
---|
1236 | { |
---|
1237 | struct list_head* p; |
---|
1238 | struct ShMemChunkDesc* chunkP; |
---|
1239 | |
---|
1240 | ENTER(0); |
---|
1241 | LOGASSERT(isSharedSegment == true); |
---|
1242 | |
---|
1243 | /* Walk down the list of allocated chunks. Map each one so that |
---|
1244 | * this process can access it from user space. |
---|
1245 | */ |
---|
1246 | spin_lock(&ChunkListLock); |
---|
1247 | |
---|
1248 | list_for_each(p, &ChunkListHead) |
---|
1249 | { |
---|
1250 | chunkP = list_entry(p, struct ShMemChunkDesc, chunkList); |
---|
1251 | TRACE1N(TRACE_SHARED, 11, TRCID_UNMAPALL_MULTI, |
---|
1252 | "cxiDetachSharedMemory: chunkP 0x%lX\n", chunkP); |
---|
1253 | |
---|
1254 | reprotectKernelMemory(chunkP->vaddrP, chunkP->len); |
---|
1255 | } |
---|
1256 | spin_unlock(&ChunkListLock); |
---|
1257 | |
---|
1258 | EXIT(0); |
---|
1259 | return 0; |
---|
1260 | } |
---|
1261 | |
---|
1262 | /* Clean up the code that manages shared kernel memory, |
---|
1263 | * including freeing all allocated chunks. |
---|
1264 | */ |
---|
1265 | void |
---|
1266 | TermSharedMemory() |
---|
1267 | { |
---|
1268 | cxiMemoryMapping_t mapping; |
---|
1269 | |
---|
1270 | ENTER(0); |
---|
1271 | InitMemoryMapping(&mapping); |
---|
1272 | |
---|
1273 | /* Delete shared segment */ |
---|
1274 | cxiFreeSharedMemory(&mapping, true); |
---|
1275 | |
---|
1276 | /* Destroy slab allocator for ShMemChunkDesc objects */ |
---|
1277 | (void)kmem_cache_destroy(ChunkCacheP); |
---|
1278 | |
---|
1279 | /* Unregister the shared segment device driver */ |
---|
1280 | unregister_chrdev(GPFSIoctlMajorNumber, "ss"); |
---|
1281 | |
---|
1282 | TRACE1(TRACE_SHARED, 2, TRCID_SSINIT_003, |
---|
1283 | "module unloaded major %d\n", GPFSIoctlMajorNumber); |
---|
1284 | GPFSIoctlMajorNumber = 0; |
---|
1285 | EXIT(0); |
---|
1286 | } |
---|
1287 | |
---|
1288 | /* Clean up slab for ShMemChunkDesc (for early termination) */ |
---|
1289 | void |
---|
1290 | CleanUpSharedMemory() |
---|
1291 | { |
---|
1292 | /* Destroy slab allocator for ShMemChunkDesc objects */ |
---|
1293 | (void)kmem_cache_destroy(ChunkCacheP); |
---|
1294 | } |
---|
1295 | |
---|
1296 | int |
---|
1297 | kxCoreDump(long sig, void *info, |
---|
1298 | struct ucontext *sc, char *filenameP) |
---|
1299 | { |
---|
1300 | struct pt_regs regs; |
---|
1301 | static int getDump = 0; |
---|
1302 | struct linux_binfmt * binfmt; |
---|
1303 | char *tmp = NULL; |
---|
1304 | int rc = -1; |
---|
1305 | int code = 0; |
---|
1306 | struct file *file = NULL; |
---|
1307 | Boolean klock = false; |
---|
1308 | struct sigcontext_struct *uc_mcontext; |
---|
1309 | unsigned long len; |
---|
1310 | |
---|
1311 | printk("kxCoreDump sig: %d fn: %s\n", sig, filenameP); |
---|
1312 | |
---|
1313 | if (getDump == 0) |
---|
1314 | getDump = 1; // don't create more than one core dump at the same time |
---|
1315 | else |
---|
1316 | return 1; |
---|
1317 | |
---|
1318 | memset((char *)®s, 0, sizeof(struct pt_regs)); |
---|
1319 | |
---|
1320 | if (sig) /* Build pt_resgs from sigcontext struct */ |
---|
1321 | { |
---|
1322 | code = 11; |
---|
1323 | goto xerror; |
---|
1324 | } |
---|
1325 | tmp = cxiMallocPinned(CXI_PATH_MAX+1); |
---|
1326 | if (!tmp) |
---|
1327 | { |
---|
1328 | code = 1; |
---|
1329 | tmp = NULL; |
---|
1330 | goto xerror; |
---|
1331 | } |
---|
1332 | if(cxiCopyInstr(filenameP, tmp, CXI_PATH_MAX, &len) != 0) |
---|
1333 | { |
---|
1334 | code = 12; |
---|
1335 | goto xerror; |
---|
1336 | } |
---|
1337 | |
---|
1338 | lock_kernel(); |
---|
1339 | klock = true; |
---|
1340 | |
---|
1341 | binfmt = current->binfmt; |
---|
1342 | if (!binfmt || !binfmt->core_dump) |
---|
1343 | { |
---|
1344 | code = 2; |
---|
1345 | goto xerror; |
---|
1346 | } |
---|
1347 | |
---|
1348 | if (MY_RLIM_CUR(RLIMIT_CORE) > 0x01000000) |
---|
1349 | MY_RLIM_CUR(RLIMIT_CORE) = 0x10000000; |
---|
1350 | |
---|
1351 | file = filp_open(tmp, O_CREAT | 2 | O_TRUNC | O_NOFOLLOW, 0600); |
---|
1352 | if (IS_ERR(file)) |
---|
1353 | { |
---|
1354 | code = 4; |
---|
1355 | file = NULL; |
---|
1356 | goto xerror; |
---|
1357 | } |
---|
1358 | if (!file->f_op || !file->f_op->write) |
---|
1359 | { |
---|
1360 | code = 5; |
---|
1361 | goto xerror; |
---|
1362 | } |
---|
1363 | rc = binfmt->core_dump(sig, ®s, file); |
---|
1364 | if (!rc) |
---|
1365 | { |
---|
1366 | code = 6; |
---|
1367 | goto xerror; |
---|
1368 | } |
---|
1369 | |
---|
1370 | xerror: |
---|
1371 | if (file) |
---|
1372 | filp_close(file, NULL); |
---|
1373 | |
---|
1374 | if (klock) |
---|
1375 | unlock_kernel(); |
---|
1376 | |
---|
1377 | if (tmp) |
---|
1378 | cxiFreePinned(tmp); |
---|
1379 | |
---|
1380 | getDump = 0; |
---|
1381 | return rc; |
---|
1382 | } |
---|
1383 | |
---|
1384 | /* This call looks very similar to a MAP_ANONYMOUS mmap() call. That's |
---|
1385 | * because we used to do mmap() for this region. Unfortunately when we |
---|
1386 | * want MAP_PRIVATE semantics we don't get the results on Linux that we |
---|
1387 | * expect. The trouble starts when the pages of this memory |
---|
1388 | * area are marked copy-on-write. Since this is our buffer pool, when |
---|
1389 | * I/O gets done, the old page goes to the child process and the new page goes |
---|
1390 | * to the parent (mmfsd). Unfortunately, the I/O gets done to the old page |
---|
1391 | * since its physical address was cached in the kiobuf. |
---|
1392 | * |
---|
1393 | * One attempt at fixing this was by making the area shared between parent |
---|
1394 | * and child via MAP_SHARED. However, it opens the possibility of a child |
---|
1395 | * process run from system() or popen() being able to stomp on the GPFS buffer |
---|
1396 | * pool. Additionally putting MAP_SHARED on the the region causes it |
---|
1397 | * to be internally mapped to /dev/zero (apparently it needs some file mapping |
---|
1398 | * on this MAP_ANONYMOUS region). Subsequent madvise() calls saying that |
---|
1399 | * we don't need the pages (MADV_DONTNEED) doesn't really free the |
---|
1400 | * pages since there is still a hold count due to the kernel /dev/zero |
---|
1401 | * mapping. Thus the free pages reported by vmstat don't go down even |
---|
1402 | * though we're freeing them from the mmap'd region. |
---|
1403 | * |
---|
1404 | * This all boils down to a workaround where we MAP_PRIVATE as we |
---|
1405 | * wanted but set the VM_DONTCOPY flag so these mmap pages don't |
---|
1406 | * get inherited by child processes. |
---|
1407 | * |
---|
1408 | * GPFS also needs to make sure that pages of its buffer pool are pinned in |
---|
1409 | * memory. This is necessary because GPFS caches the pointers to the struct |
---|
1410 | * page objects returned by map_user_kiobuf. Linux might steal pages in |
---|
1411 | * one of two ways: reclaim_page will steal pages with count <= 1, and |
---|
1412 | * swap_out_vma will clear the page table mapping of pages belonging to |
---|
1413 | * vm_area_structs that do not have the VM_LOCKED bit set. |
---|
1414 | * GPFS prevents the first case because map_user_kiobuf increases page |
---|
1415 | * reference counts to 2. We used to turning on the VM_LOCKED bit here, |
---|
1416 | * but now we mlock() the memory to ensure it isn't swapped out. |
---|
1417 | */ |
---|
1418 | int |
---|
1419 | kxMapPrivate(char *inAddr, unsigned long len, unsigned long prot, |
---|
1420 | char **outAddr) |
---|
1421 | { |
---|
1422 | struct mm_struct *mmP; |
---|
1423 | struct vm_area_struct *vmaP = NULL; |
---|
1424 | |
---|
1425 | mmP = current->mm; |
---|
1426 | |
---|
1427 | ACQUIRE_MMAP_SEM(&mmP->mmap_sem); |
---|
1428 | |
---|
1429 | *outAddr = (char *)do_mmap(NULL, (unsigned long)inAddr, len, prot, |
---|
1430 | MAP_PRIVATE | MAP_ANONYMOUS, 0); |
---|
1431 | /* Only look for address in vma list if do_mmap matches what we asked for; |
---|
1432 | otherwise it may be an unexpected address or an error code and |
---|
1433 | both are a problem. Any issues should be handled in the daemon |
---|
1434 | if possible (eg, -ENOMEM). */ |
---|
1435 | if (*outAddr == inAddr) |
---|
1436 | { |
---|
1437 | for (vmaP = mmP->mmap; vmaP != NULL; vmaP = vmaP->vm_next) |
---|
1438 | if (vmaP->vm_start == (unsigned long)*outAddr) |
---|
1439 | { |
---|
1440 | /* We don't want our vm_area_structs merged since we are |
---|
1441 | * about to set a flag that would cross into an area where |
---|
1442 | * it might not be good. For instance if we get merged with |
---|
1443 | * the stack vm area then we won't be able to fork since the |
---|
1444 | * stack wouldn't be copied. |
---|
1445 | */ |
---|
1446 | LOGASSERT(vmaP->vm_end == vmaP->vm_start + len); |
---|
1447 | vmaP->vm_flags |= VM_DONTCOPY; |
---|
1448 | break; |
---|
1449 | } |
---|
1450 | |
---|
1451 | DBGASSERT(vmaP != NULL); |
---|
1452 | } |
---|
1453 | |
---|
1454 | RELEASE_MMAP_SEM(&mmP->mmap_sem); |
---|
1455 | |
---|
1456 | TRACE5(TRACE_SHARED, 1, TRCID_CXI_MAP_PRIVATE, |
---|
1457 | "kxMapPrivate: inAddr 0x%lX len %d prot 0x%X outAddr 0x%lX vmaP 0x%lX\n", |
---|
1458 | inAddr, len, prot, *outAddr, vmaP); |
---|
1459 | |
---|
1460 | if (*outAddr == inAddr) |
---|
1461 | return 0; |
---|
1462 | |
---|
1463 | return -EFAULT; |
---|
1464 | } |
---|
1465 | |
---|
1466 | #ifdef SSEG_SWIZZLE_PTRS |
---|
1467 | /* mmap handler for shared segment */ |
---|
1468 | int ss_fs_mmap(struct file *file, struct vm_area_struct *vma) |
---|
1469 | { |
---|
1470 | UIntPtr offset = vma->vm_pgoff<<PAGE_SHIFT; |
---|
1471 | UIntPtr size = vma->vm_end - vma->vm_start; |
---|
1472 | |
---|
1473 | if ((vma->vm_flags & VM_WRITE) && !(vma->vm_flags & VM_SHARED)) |
---|
1474 | { |
---|
1475 | printk("ss_fs_mmap: invalid mmap flags\n"); |
---|
1476 | return -EINVAL; |
---|
1477 | } |
---|
1478 | |
---|
1479 | if (offset != 0) |
---|
1480 | { |
---|
1481 | printk("ss_fs_mmap: page offset should be zero (%ld)\n", offset); |
---|
1482 | return -EINVAL; |
---|
1483 | } |
---|
1484 | |
---|
1485 | /* add page fault handler for vm area */ |
---|
1486 | vma->vm_ops = &ss_vm_ops; |
---|
1487 | |
---|
1488 | #if LINUX_KERNEL_VERSION >= 2060000 |
---|
1489 | /* 2.6 kernel appears to want the pages marked as unswappable, |
---|
1490 | otherwise gobs of messages about "Badness in do_nopage/copy_page_range" |
---|
1491 | occur in the system log. Still looking at this, but it appears that the |
---|
1492 | kernel expects these pages to be "device" reserved pages verses typical |
---|
1493 | anonymous pages (assumes a device intends to use the pages for DMA?) |
---|
1494 | and doesn't want them tracked by VMM. */ |
---|
1495 | vma->vm_flags |= VM_RESERVED; |
---|
1496 | #endif |
---|
1497 | |
---|
1498 | /* perform open on vm area */ |
---|
1499 | ss_vm_open(vma); |
---|
1500 | |
---|
1501 | return 0; |
---|
1502 | } |
---|
1503 | |
---|
1504 | /* vm area handlers for shared segment */ |
---|
1505 | |
---|
1506 | void ss_vm_open(struct vm_area_struct *vma) |
---|
1507 | { |
---|
1508 | MY_MODULE_INCREMENT(); |
---|
1509 | } |
---|
1510 | |
---|
1511 | void ss_vm_close(struct vm_area_struct *vma) |
---|
1512 | { |
---|
1513 | MY_MODULE_DECREMENT(); |
---|
1514 | } |
---|
1515 | |
---|
1516 | /* Page fault handler |
---|
1517 | Called by do_no_page with address of faulting page (ie, on page boundary) */ |
---|
1518 | #if LINUX_KERNEL_VERSION < 2060000 |
---|
1519 | struct page * |
---|
1520 | ss_vm_nopage(struct vm_area_struct *vma, unsigned long address, int unused) |
---|
1521 | #else |
---|
1522 | struct page * |
---|
1523 | ss_vm_nopage(struct vm_area_struct *vma, unsigned long address, int *type) |
---|
1524 | #endif /* LINUX_KERNEL_VERSION < 2060000 */ |
---|
1525 | { |
---|
1526 | UIntPtr offset; |
---|
1527 | UIntPtr va; |
---|
1528 | struct page *ret_page = NOPAGE_SIGBUS; |
---|
1529 | int found = 0; |
---|
1530 | struct list_head* p; |
---|
1531 | struct ShMemChunkDesc* chunkP; |
---|
1532 | |
---|
1533 | if ((address < vma->vm_start) || (address >= vma->vm_end)) |
---|
1534 | { |
---|
1535 | printk("ss_vm_nopage: address 0x%lx out of vma range [%lx,%lx)\n", |
---|
1536 | address, vma->vm_start, vma->vm_end); |
---|
1537 | return ret_page; |
---|
1538 | } |
---|
1539 | |
---|
1540 | /* Make sure that the user address from a page fault is backed by |
---|
1541 | kernel memory (find a containing memory chunk). |
---|
1542 | The most recently allocated block will be at the head of |
---|
1543 | the list, so generally we only check the first list entry. */ |
---|
1544 | /* May want to cache last list entry where a "hit" occurs if needed |
---|
1545 | for performance at some point, eg, non-daemon attach. */ |
---|
1546 | spin_lock(&ChunkListLock); |
---|
1547 | list_for_each(p, &ChunkListHead) |
---|
1548 | { |
---|
1549 | chunkP = list_entry(p, struct ShMemChunkDesc, chunkList); |
---|
1550 | if ((address >= (UIntPtr)chunkP->usrvaddrP) && |
---|
1551 | (address < (UIntPtr)chunkP->usrvaddrP + chunkP->len)) |
---|
1552 | { |
---|
1553 | found = 1; |
---|
1554 | break; |
---|
1555 | } |
---|
1556 | } |
---|
1557 | spin_unlock(&ChunkListLock); |
---|
1558 | if (!found) |
---|
1559 | { |
---|
1560 | /* We have a problem; unable to find backing kernel memory */ |
---|
1561 | printk("ss_vm_nopage: unable to find kernel chunk backing user address 0x%lx\n", address); |
---|
1562 | return ret_page; |
---|
1563 | } |
---|
1564 | |
---|
1565 | /* calculate the kernel virtual address */ |
---|
1566 | offset = address - (IntPtr)chunkP->usrvaddrP; |
---|
1567 | va = (UIntPtr)(chunkP->vaddrP + offset); |
---|
1568 | |
---|
1569 | /* Grab kernel page table lock before traversing kernel page table. |
---|
1570 | I believe this is necessary in order to avoid having another processor |
---|
1571 | change the page table on us while we are traversing. |
---|
1572 | Normally only the process page table lock is grabbed when a |
---|
1573 | page fault occurs (to protect against kswapd). */ |
---|
1574 | spin_lock(&init_mm.page_table_lock); |
---|
1575 | |
---|
1576 | /* traverse kernel page table */ |
---|
1577 | ret_page = vmalloc_to_page((void *)va); |
---|
1578 | |
---|
1579 | spin_unlock(&init_mm.page_table_lock); |
---|
1580 | if (ret_page == NULL) |
---|
1581 | { |
---|
1582 | printk("ss_vm_nopage: vmalloc_to_page returned NULL\n"); |
---|
1583 | return ret_page; |
---|
1584 | } |
---|
1585 | |
---|
1586 | /* bump up page use count */ |
---|
1587 | get_page(ret_page); |
---|
1588 | |
---|
1589 | #ifdef SWIZ_BIG_DEBUG |
---|
1590 | printk("ss_vm_nopage: page fault for offset 0x%lx uva 0x%lx va 0x%lx (kva x%lx)\n", |
---|
1591 | offset, address, va, page_address(ret_page)); |
---|
1592 | #endif |
---|
1593 | |
---|
1594 | #if LINUX_KERNEL_VERSION >= 2060000 |
---|
1595 | if (type) |
---|
1596 | *type = VM_FAULT_MINOR; |
---|
1597 | #endif |
---|
1598 | |
---|
1599 | /* return page */ |
---|
1600 | return ret_page; |
---|
1601 | } |
---|
1602 | #endif /* SSEG_SWIZZLE_PTRS */ |
---|