Version 1 (modified by jazz, 11 years ago) (diff) |
---|
實作八 Lab 8
在完全分散模式下編譯 MapReduce 程式
Compiling Hadoop MapReduce Java Program in Hadoop Cluster
Compiling Hadoop MapReduce Java Program in Hadoop Cluster
以下練習,請連線至 hadoop.nchc.org.tw 操作。底下的 hXXXX 等於您的用戶名稱。
Practice 1 : Word Count (Basic)
- 上傳內容到 HDFS 內
upload data to HDFS$ mkdir lab8_input $ echo "I like NCTU Cloud Course." > lab8_input/input1 $ echo "I like nctu Cloud Course, and we enjoy this course." > lab8_input/input2 $ hadoop fs -put lab8_input lab8_input $ hadoop fs -ls lab8_input Found 2 items -rw-r--r-- 2 hXXXX supergroup 26 2011-04-19 10:07 /user/hXXXX/lab8_input/input1 -rw-r--r-- 2 hXXXX supergroup 52 2011-04-19 10:07 /user/hXXXX/lab8_input/input2
- 下載 WordCount.java 並存到家目錄;
Download WordCount.java and save to your home directory~$ wget http://www.classcloud.org/hadoop4win/WordCount.java
- 運作程式
Compile WordCount.java and run it by hadoop jar command
$ mkdir MyJava $ ln -s /opt/hadoop/hadoop-*-core.jar hadoop-core.jar $ javac -classpath hadoop-core.jar -d MyJava WordCount.java $ jar -cvf wordcount.jar -C MyJava . $ hadoop jar wordcount.jar WordCount lab8_input/ lab8_out1/ $ hadoop fs -cat lab8_out1/part-00000
- lab8_out1 執行結果
You should see results like this :Cloud 2 Course, 1 Course. 1 I 2 NCTU 1 and 1 course. 1 enjoy 1 like 2 nctu 1 this 1 we 1