

Importing data from MySQL
Or, “DBInputFormat for fun and profit”

Aaron Kimball

Cloudera Inc.

Feb 18, 2009

Unstructured data is useful

� Take everyone’s favorite example, log parsing:

207.181.42.20 - - [07/Feb/2003:11:38:28 -0800] "GET
/archive/2003/02/01/space_sh.shtml HTTP/1.1" 200 11966
"http://www.google.com/search?hl=en&lr=&ie=UTF-8&oe=UTF-
8&q=Space+Shuttle+Columbia+November+2002" "Mozilla/4.0
(compatible; MSIE 6.0; Windows 98; Q312461)"

ip-address identd authuser [DD/MMM/YYYY:hh:mm:ss TZ]
"request string" status bytes "referrer" "user-agent"

Structured data is useful

� Utility of unstructured data improved by structured data

� E.g., IP Geolocation resolves IP addresses to city, state, country

� ~100 MB of data

� Available as SQL database dump

Joining data

� Problem: Merge the log records with IP geolocation data

� Too much log data to dump to SQL db, how to bring db to us?

�Hadoop MapReduce, Hive, Pig… all work from HDFS!

DBInputFormat

� Connects to JDBC interface

� Selects records out of tables, arbitrary queries

� Provides interface to use arbitrary input queries, tables, databases

� Records written to DBWritable, provided as value to Mapper

� Constraints:

� Must be able to totally order results (e.g., by primary key)

� Must be able to count expected result set size ahead of time

DBWritable

�You define a class to hold a row from the database

� Must be able to read from JDBC ResultSet into fields

� Must be able to write to JDBC PreparedStatement

�Should also implement regular Writable

Configuration Example

1.JobConf conf = new JobConf(getConf(), Foo.class);

2.conf.setInputFormat(DBInputFormat.class);

3.DBConfiguration.configureDB(conf,

4. “com.mysql.jdbc.Driver”,

5. “jdbc:mysql://localhost/mydatabase”);

6.String [] fields = { “my_pkey”, “my_value” };

7.DBInputFormat.setInput(conf, MyRecord.class, “mytable”,

8. null, “my_pkey”, fields);

9.// set Mapper, etc., and call JobClient.runJob(conf);

DBWritable Example

1.class MyRecord implements Writable, DBWritable {

2. long pkey;

3. long val;

4. public void readFields(DataInput in) throws IOException {

5. this.pkey = in.readLong();

6. this.val = in.readLong();

7. }

8. public void readFields(ResultSet resultSet)

9. throws SQLException {

10. this.pkey = resultSet.getLong(1);

11. this.val = resultSet.getLong(2);

12. }

13.}

Parallelism and scalability

� Prepares statement of the form:

“SELECT … ORDER BY … LIMIT … OFFSET …”

for each Mapper

� InputSplit corresponds to OFFSET into query

� (Counting query required ahead of time to determine split count)

� Scalability limited by bandwidth of the database server

� 100 Mappers/Reducers would easily saturate the pipe from one
node

� Could be used once to do a bulk import into HDFS for Hive, etc.

DBOutputFormat

�Define the table and fields to populate with results from
MapReduce job

� Individual values emitted by Reducers are bundled into SQL
transaction

� All committed at end of reduce operation (during close())

�DBWritable interface provides write(PreparedStatement stmt)

Flexibility

� Any JDBC database can work (MySQL, Postgres, HSQLdb…)

� Supports quick read-in of existing tables for ad-hoc jobs

� Database sharding currently would need to be handled at db side

� Future work: support client-side row-level sharding

Conclusions

� Good for ad-hoc queries

� May be useful for bulk loading database into Hive

� Straightforward interface extends existing MapReduce API

� Available in Hadoop 0.19

� (But HADOOP-2536 can be applied to 0.18.x without much
difficulty)

(c) 2008 Cloudera, Inc. or its licensors. "Cloudera" is a registered trademark of Cloudera, Inc.. All rights reserved. 1.0

