evelopments

| Purtell
andrew_purtell@trendmicro.com
apurtell@apache.org

) TREND

Tcloud T

HEBEBASE

mailto:andrew_purtell@trendmicro.com
mailto:apurtell@apache.org

« Security
« Coprocessors

 Wrap Up

oud‘Computing

Setaby 0™M5 data volume
Google encountered
devised architectural

» BigTable is the inspira

The Big Data Age

» According to one estimate, globally
the world created 150 exabytes of
data in 2005

 This year, the world may create
more than 1,500 exabytes of data

Big Data in their operations and
s0lutions for it, including BigTable

on for HBase -

Global information created and available storage
Exabytes

2,000
1,750
1,500
1,250
1,000
750
500
250
1 1 | | | 1 EI
2005 06 OF o©O8 09 10 11
Source: 1DC

FORECAST

Infarmation created

adoop fid that
ause Hadoop helps

\i O|Son, -0, Cloudera

http://www.cloudera.com/

 Many business, even small ones, during the course of
their normal operations can generate petabytes of
data per year

o |f they retain it, they can mine it and gain insights

« Open source analytics enablers like the Hadoop
software ecosystem — of which HBase is a part —
make this an emerging reality

http://www.cloudera.com/

oretty welll

puting
arid = Cloud
erver computing that abstracs the

Vorkstation = Netw

e Cloud computing is
details of the server away

« Scale free |

* Resources anywhere/everywhere

* Loosely coupled computing

» Decentralized, open standards

* Open technologies

 New ownership model

up very large
e demand
lication or service, not about

infrastructure
A

A

Resources
Resources

Time Time

Static data center Data center in the cloud

| Unused resources

N as it IS a means

r scale architectures
and Medium) Data

— Scale free computational framework for
managing it

oop) Introduction

as/minute, a new

terabyte (1)0 bytes) in 62 seconds
' a petabyte (1,000,00C |

Terabyte Task Timeline

W reduce

Running Tasks

merge
& shuffle

¥ maps

0
13 5 7 91113151719212325272931333537394143454749515355

Seconds

HD
' tolerant database

: value 1 on packages (analytics,
management), distril 1S, dashboards, etc.

————————————————————————————

HBase (Distributed Map)

Avro (Serialization)

=
9
)
©
S
©
—
o
o
Q
L
o
4))
o
X
o
@)
N

e Given: 4
- 10 MB/second transfer k
- 10 milliseconds disk seek time
- 100 bytes per entry (10 billion entries)
- 10 kB per page (1 billion pages)
« Updating 1% of entries (100,000,000) takes:
- 1,000 days with random B-Tree updates
- 100 days with batched B-Tree updates
- 1 day with sort and merge

— Log structured data access on streaming filesystem

.. and locality of I/O references

— Column families
.. and time ranges

— Timestamps

ons of columns *

of BigTable, enhanced with
ed by the community

Fast fault recovery via keeper
* Query push down via server side query and scanner filters
« Optimizations for real time queries
* Rolling restarts
« Push metrics to log files or Ganglia (http://ganglia.info/)
e Value time to lives (TTLs)
Administrative GUl and command line shell
o A Hadoop subproject
* The usual ASF things apply (license, JIRA, etc)

http://ganglia.info/

pdé;té through sor érge Instead of seek and replace
 In contrast, RDBMS ms
« Distributed transactions, complex locking

Seek and replace update strategy

Waits and deadlocks rise non-linearly with transaction size
and concurrency

- Square of concurrency
— Third power of transaction size

Relational features are abandoned at scale anyway
Application level sharding as a last resort is not a solution

Row Key

"com.cnn.www"

Time
Stamp

2
ts
to
t5

t3

"com.cnn.www" — ™ -

rfg:i::;l " Column "anchor:"
"anchor:cnnsi.com"| "CNN"
"anchor:my look.ca" | "CNN.com"

"<html=..."

"<html>..."

"<html>..."

"contents:”

"anchor:cnnsi.com”

stamps avoid edit conflicts
oupled processes

"anchor:my.look.ca"

T T | * d i T
1 | | ' 1
Lo - e . — — — r_____
: " "EhTmllﬂfl' - 1 | " n I
e g/ CNN" =1, CNN.com" |= tg
:'h:t‘m'l | g
N e (IR SO S W L_____|
I [1
Column I ' I
"miines "
colB ->
rowA > colA -> value value?
"text/html"
rowB = foo -> long value
rowC > url -> huge value

.

. Instead, think of tags

' colB ->
rowA - colA -> value e

rowB > foo <> long value ‘
rowC > url -> huge value I
A

Values of any length, no predefined names or widths

indexing

(memory
to find any

st, bina
esident) into co
matching row

— Then scan the block tc
matching qualifiers

« Each family in separate store files

values with

« Values are stored in sorted order
* Optional file level compression

(GZIP, LZO)

« Lexiographically similar values are
packed adjacent to each other for
good locality of I/O; it is fast and cheap
to scan adjacent rows and columns

'i

distributed evenly
vV C Oad Assignment

Table with splits 10 regionservers

20US

“ine grained load balancing

Regions are m|grate
loaded nodes

Enables fast recovery e /@

Master rapidly redeploys regions from
failed nodes to others

Keys: [0-2)

Keys: [2-4)

from highly

Keys: [4-7)

Keys: [8-0]

e

:) A & Y MO
1 ,d :

v g Tl

returns an answer
(immediately)

. P: Partition Tolerance

- The system can handle Hpase
the failure of some BiqTabl
nodes and loss of some (BigTable)
messages

e You can have only 2 of 3

» BigTable is a "CP" architecture

« Strong consistency with fault (partition) tolerance

« Value storage is canonical: Every value appears in one region only and
each region is assigned to only one region server at a time

ik g

FPartition Tolerance

erver at a time
systems, HBase

locks

« Atomic compareA o:'_
operators

 All mutations are atomic in the row

« Multiversioning and timestamps can help with
application layer consistency concerns

« All edits are timestamped and the storage system supports
storage and retrieval of multiple versions of a value

» Applications can query for the latest version according to
timestamp, time range, or most recent N versions,
depending on requirements

CAS) and increment/decrement

CURRENT IR

* With ZooKeeper

)e migrated
faviorably with HDFS block

Track cluster membership and detect dead servers

Supports master election and recovery in multi-master
deployments

Automatic Master failover
Rolling upgrades of point releases
Modify some cluster configuration without full cluster restart

Hadoop stack

Split i

osting the table regions

FecordReader

T InputFormat

Key Class 1 | Value Class 1
T]
VAT
Key Class 1 | Value Class 1

l ¥ Mapper
Key Clags 2 |Value Class 2

Value Class 2

.

Value Class 3

Key Class 3 |Value Class 3
RecordWriter

Image credit: Lars George

HRegionServer HRegionServer

HRegion HRegion

Store Store

StoreFile StoreFile

TN
| LL LT LT |eee

v A
HENEEEEEREEEEER

OOo@og | oGO
oot oot
HiENE RN N

DataNode DataNode

HiEim
HiEnn.
HiENE .

DataNode

HiENE .
ot

DataNode

DE
DDDD

DataNode

Hadoop

Image credit: Lars George

hold: all sto

Compactions are done |
the background

Periodically, the log file
Is closed and a new one
created

Old log files are garbage
collected

Updating via rewritin
100x — 1000x faster than
update via seek and
replace at large scale

rite

s

g a new file in each store

mber of files in an store exceeds a
sorted into a single new store file

DéTeted and exp|re values are garbage collected during compactions

N
\ﬂldf/
2)redo roll ¥ redo
log log \&iog_/
B _—
T .
G, redo
) ~log -
3) cache Esisted e
| datat0 >
N c%\ paction ge(d)
v . (\/—’ ersisted
/k_ - _xg'it&zg/
s -~ ppersisted
Jlush data tl

- ~

— -

, [timestamp] }

een found to satisfy the search

re expired val are configured on the relevant column

families |
« Expired values will be g e collected at next compaction, just like
deletes
read
: 1) cache

data tl data t0
S

Data Dura nd ACID Guarantees

uarantees that HBase has
well enumerated, but we now

provided have not be
have a specification
e JavaDoc in 0.20.4
« HBASE-2294

(https://issues.apache.org/jira/browse/HBASE-2294)
« Many of these guarantees have always been
informally provided

e Some have been clarified for this release

 Next: Additions to the unit test suite to continuously
validate the implementation and test for regressions

https://issues.apache.org/jira/browse/HBASE-2294

aAClroOSs¢ e

ens atomically like the
i \S) operation
e order of mutations is seen to happen in a well-
defined order for each row, with no interleaving
* All rows returned via any access API will consist of a
complete row that existed at some point
« This is true across column families
A scan is not a consistent view of a table; scans do
not exhibit snapshot isolation; instead:
* Any row returned by the scan will be a consistent view

« A scan will always reflect a view of the data at least as new
as the beginning of the scan

N

sequentially through a

ny sequence o
e Any version of a cel
operation is guarantee

1t reads will return a subsequence

has been returned to a read
to be durably stored

to be able to
e been persisted to

Normally not a p but there are some narrow

failure cases remain
« HDFS-200 provides working append and HBase has

support for it which solves the problem

« Developed

* In testing

« About 1-2 months away

« HBase 0.20.5 with a Hadoop release including HDFS-200
will insure that if a store succeeds the data is guaranteed to
be persisted

https://issues.apache.org/jira/browse/HDFS-200

ributes to specify the

ocal: Do not repl
- Global: Replicate ev
— Only replicate globally d cells

- Scope is specified as an integer to enable more complex policies as
they are developed in the future

« Replication is peer to peer (cluster)

 Supports arbitrary topologies: mesh, spoke-and-wheel, tree,
pipeline, etc.

« RegionServers do the work

« A subset of RS nominate themselves via ZK to act as
endpoints for inter-cluster replication

« Ship logs between themselves in the background

1) Collect global edits from newly rolled WAL

0 DA A T A

. Get HBase working is substrate bottom up

e Add role based access control model to HBase
» Leverage Kerberos to establish user identity
« Manage a meta table that associates users with roles
 ACLs on tables, possibly also on column families
« Superuser privilege for administration
 Integrate this into HBase top down
 Integrate with HDFS layer security ?

* Meet efficiently and effectively in the middle

Isolation and :
Integrity - Audit Trace

Zookeeper

Secure RPC

HBase
Master

” g

\

Authentication
,,,,, HDFS Server (AS)
T krb NameNode
Clients b(lser) - —_—
(Service front ,
en@s)
e OIS . Ticket Granting
block token DataNode Server (TGS)

HBase
ReglonServer block token

Kerberos KDC

» Clients access HDFS and HBase services independently

« All actions requires a valid HDFS block token acquired via krb authentication to NameNode
« HDFS DataNodes will not serve reads and writes unless given valid block token for block(s)
» All RPC is secure (SASL + GSSAPI)

JobTracker « TaskTrackers
" MR tasks

HDFS
NameNode

HBase
RegionServer

e front
ends)

HBase ' HDFS '
Master DataNode ZooKeeper

Chukwa Log4J Appender |

_—e—— e e e e e e e e e e e e e e e e e e — — —

—————————————— I
| 7 HDFS |
Chukwa [
I o I

| | [MDL I
| | Chukwa Chukwa Chukwa | - I
I Callector | ™| Data Sink » Re |
I - : Files ok 1—|I— T |

| I &
| Log Files /Ehulma I | Chukwa I :
| |{data sounce) Legad I L Demux J DataBase I
I Appender I — 1 [ar S |
I I i I
I Ly I
I Ly I
: Monitored : I AI'Z'I']-'FI_ g:;ﬁ: Chukwa | |
| Source Nodes | : Chukwa Cluster nalysia UkliEee Wb L :
I 1y |

- Log aggregation solution proposal based on Apache Chukwa (e)
» Subset of platform resources must be reserved for private Chukwa/MR cluster

»al or anges of rows
= Coprocessor client libre / resolves to actual locations

- Calls across multipl ows automatically split
parallelized RPCs

 "Very flexible model for building distributed services"
e "Automatic scaling, load balancing, request routing”
« Example Coprocessor Uses

e Scalable metadata management for Colossus

« Distributed language model serving for machine translation
system

» Distributed query processing for full-text indexing support
* Regular expression search support for code repository

into multiple

JIC v‘ u .
o jar file
ers when table regions are
| omes part of the regionserver
viotiviation _—
e Gurrently extendir ‘HBase means subclassing
HRegionServer and HRegionlInterface
- Resulting extensions are mutually exclusive

« Basic Hadoop architectural principle of colocating
computation with data
- Computation here can be
« Calculation of aggregates over region data: count(), sum(), etc.
Management of secondary indices
Dynamic indexing
More complex data models layered on HBase for scalability
Query push down with arbitrarily complex predicates

ediators « 2ad of observers

Iy extensior ilt on top of RegionObserver
- Secondary indexes
- Filters |
- Propagation constraints

« CommandTarget

« If the coprocessor implements this interface, it can receive
arbitrary method invocations from clients

« Combine RegionObserver and CommandTarget to
extend HBase in arbitrary ways

« Mapping layers, e.g. ORMs
« Native RDF tuple store
* Cloud filesystem

termediates

el region MapReduce

- Shared memory
» For efficient implementation of aggregating functions

- Multithreaded (worker pools)
« Concurrency of mappers and reducers is specified separately

e Scanner like interface to retrieve results

» Uses leases
- A jobis only alive as long as it has a lease

- For long running jobs the client must periodically poll status to keep it
alive; jobs without interest will be cancelled

- Retrieval by "scanner” will also renew the lease

iling_lists.html

 |RC Channel

« #hbase on Freenod

« Committers and core contributors are here on a regular
basis

« More active than the Hadoop forums

 Follow HBase on Twitter!
e (@hbase

http://hbase.org/
http://hadoop.apache.org/hbase/mailing_lists.html

andrew_purtell(

rcloud T

mailto:apurtell@apache.org
mailto:andrew_purtell@trendmicro.com

