
ZFS:
The Last Word
in File Systems

Ben Wu (吳宏彬)
Software Architect
Sun Microsystems Taiwan

ZFS – The Last Word in File Systems

ZFS Overview
● Provable data integrity

● Detects and corrects silent data corruption

● Immense capacity
● The world's first 128-bit filesystem

● Simple administration
● “You're going to put a lot of people out of work.”

– Jarod Jenson, ZFS beta customer

● High performance

ZFS – The Last Word in File Systems

Trouble With Existing Filesystems
● No defense against silent data corruption

● Any defect in disk, controller, cable, driver, or firmware can
corrupt data silently; like running a server without ECC memory

● Difficult to manage
● Labels, partitions, volumes, provisioning, grow/shrink, /etc/vfstab...
● Lots of limits: filesystem/volume size, file size, number of files,

files per directory, number of snapshots, ...
● Not portable between platforms (e.g. x86 to/from SPARC)

● Very slow
● Linear-time create, fat locks, fixed block size, naïve prefetch,

slow random writes, dirty region logging

ZFS – The Last Word in File Systems

ZFS Objective

● Data management should be a pleasure
● Simple
● Powerful
● Fast
● Safe

End the Suffering

ZFS – The Last Word in File Systems

ZFS Design Principles
● Pooled storage

● Completely eliminates the antique notion of volumes
● Does for storage what VM did for memory

● End-to-end data integrity
● Historically considered “too expensive”
● Turns out, no it isn't
● And the alternative is unacceptable

● Transactional operation
● Keeps things always consistent on disk
● Removes almost all constraints on I/O order
● Allows us to get huge performance wins

ZFS – The Last Word in File Systems

Why Volumes Exist

In the beginning,
each filesystem
managed a single
disk.

FS

Volume
(2G concat)

FS

LowerLower
1G1G

UpperUpper
1G1G

Volume
(2G stripe)

EvenEven
1G1G

OddOdd
1G1G

Volume
(1G mirror)

LeftLeft
1G1G

RightRight
1G1G

FS FS

● Customers wanted more space, bandwidth, reliability
● Hard: redesign filesystems to solve these problems well
● Easy: insert a little shim (“volume”) to cobble disks together

● An industry grew up around the FS/volume model
● Filesystems, volume managers sold as separate products
● Inherent problems in FS/volume interface can't be fixed

1G1G
DiskDisk

ZFS – The Last Word in File Systems

FS/Volume Model vs. ZFS

Traditional Volumes
● Abstraction: virtual disk
● Partition/volume for each FS
● Grow/shrink by hand
● Each FS has limited bandwidth
● Storage is fragmented, stranded

ZFS Pooled Storage
● Abstraction: malloc/free
● No partitions to manage
● Grow/shrink automatically
● All bandwidth always available
● All storage in the pool is shared

Storage PoolVolume

FS

Volume

FS

Volume

FS ZFS ZFS ZFS

ZFS – The Last Word in File Systems

FS/Volume Model vs. ZFS

FS/Volume I/O Stack

FS

Volume

Block Device Interface

● “Write this block,
then that block, ...”

● Loss of power = loss of
on-disk consistency

● Workaround: journaling,
which is slow & complex

ZFS

Storage
Pool

Block Device Interface

● Write each block to each
disk immediately to keep
mirrors in sync

● Loss of power = resync

● Synchronous and slow

Object-Based Transactions

● “Make these 7 changes
to these 3 objects”

● All-or-nothing

Transaction Group Batch I/O

● Schedule, aggregate,
and issue I/O at will

● No resync if power lost

● Runs at platter speed

ZFS I/O Stack

DMUTransaction Group Commit

● Again, all-or-nothing

● Always consistent on disk

● No journal – not needed

ZFS – The Last Word in File Systems

ZFS Data Integrity Model
● Everything is copy-on-write

● Never overwrite live data
● On-disk state always valid – no “windows of vulnerability”
● No need for fsck(1M)

● Everything is transactional
● Related changes succeed or fail as a whole
● No need for journaling

● Everything is checksummed
● No silent data corruption
● No panics due to silently corrupted metadata

ZFS – The Last Word in File Systems

Copy-On-Write Transactions
1. Initial block tree 2. COW some blocks

4. Rewrite uberblock (atomic)3. COW indirect blocks

ZFS – The Last Word in File Systems

● At end of TX group, don't free COWed blocks
● Actually cheaper to take a snapshot than not!

Snapshot root
Live root

Bonus: Constant-Time Snapshots

ZFS – The Last Word in File Systems

End-to-End Data Integrity
Disk Block Checksums

● Checksum stored with data block
● Any self-consistent block will pass
● Can't even detect stray writes
● Inherent FS/volume interface limitation

Data Data

Address

Checksum Checksum

Address

Data
Checksum

Data
Checksum

ZFS Data Authentication
● Checksum stored in parent block pointer

● Fault isolation between data and checksum

● Entire storage pool is a
self-validating Merkle tree

ZFS validates the entire I/O path
✔ Bit rot

✔ Phantom writes

✔ Misdirected reads and writes

✔ DMA parity errors

✔ Driver bugs

✔ Accidental overwrite

Address

Checksum Checksum

Address

Disk checksum only validates media
✔ Bit rot

✗ Phantom writes

✗ Misdirected reads and writes

✗ DMA parity errors

✗ Driver bugs

✗ Accidental overwrite

ZFS – The Last Word in File Systems

Traditional Mirroring

Application

xxVM mirror

1. Application issues a read.
Mirror reads the first disk,
which has a corrupt block.
It can't tell.

2. Volume manager passes
bad block up to filesystem.
If it's a metadata block, the
filesystem panics. If not...

3. Filesystem returns bad data
to the application.

FS

Application

xxVM mirror

FS

Application

xxVM mirror

FS

ZFS – The Last Word in File Systems

Self-Healing Data in ZFS

Application

ZFS mirror

Application

ZFS mirror

Application

ZFS mirror

1. Application issues a read.
ZFS mirror tries the first disk.
Checksum reveals that the
block is corrupt on disk.

2. ZFS tries the second disk.
Checksum indicates that the
block is good.

3. ZFS returns good data
to the application and
repairs the damaged block.

ZFS – The Last Word in File Systems

Traditional RAID-4 and RAID-5
● Several data disks plus one parity disk

● Fatal flaw: partial stripe writes
● Parity update requires read-modify-write (slow)

● Read old data and old parity (two synchronous disk reads)
● Compute new parity = new data ^ old data ^ old parity
● Write new data and new parity

● Suffers from write hole:
● Loss of power between data and parity writes will corrupt data
● Workaround: $$$ NVRAM in hardware (i.e., don't lose power!)

● Can't detect or correct silent data corruption

^ ^ ^ ^ = garbage

^ ^ ^ ^ = 0

ZFS – The Last Word in File Systems

RAID-Z
● Dynamic stripe width

● Variable block size: 512~128K
● Each logical block is its own stripe

● 3 sectors (logical) = 3 data blocks + 1 parity block, etc.
● Integrated stack is key: metadata drives reconstruction
● Currently support single-, double-, or triple parity (raidz1, raidz2, raidz3)

● All writes are full-stripe writes
● Eliminates read-modify-write (it's fast)
● Eliminates the RAID-5 write hole (you don't need NVRAM)

● Detects and corrects silent data corruption
● Checksum-driven combinatorial reconstruction

● No special hardware – ZFS loves cheap disks

ZFS – The Last Word in File Systems

Disk Scrubbing
● Finds latent errors while they're still correctable

● ECC memory scrubbing for disks

● Verifies the integrity of all data
● Traverses pool metadata to read every copy of every block
● Verifies each copy against its 256-bit checksum
● Self-healing as it goes

● Provides fast and reliable resilvering
● Traditional resilver: whole-disk copy, no validity check
● ZFS resilver: live-data copy, everything checksummed
● All data repair operations use the same reliable mechanism

● Mirror resilver, RAID-Z resilver, attach, replace, scrub

ZFS – The Last Word in File Systems

ZFS Scalability
● Immense capacity (128-bit)

● Moore's Law: need 65th bit in 10-15 years
● ZFS capacity: 256 quadrillion ZB (1ZB = 1 billion TB)
● Exceeds quantum limit of Earth-based storage

● Seth Lloyd, "Ultimate physical limits to computation."
Nature 406, 1047-1054 (2000)

● 100% dynamic metadata
● No limits on files, directory entries, etc.
● No wacky knobs (e.g. inodes/cylinder group)

● Concurrent everything
● Range locks: parallel read/write without violating POSIX
● ZAP: parallel, constant-time directory operations

ZFS – The Last Word in File Systems

ZFS Performance
● Copy-on-write design

● Turns random writes into sequential writes

● Multiple block sizes
● Automatically chosen to match workload

● Pipelined I/O
● Fully scoreboarded 24-stage pipeline with I/O dependency graphs
● Maximum possible I/O parallelism
● Priority, deadline scheduling, out-of-order issue, sorting,

aggregation

● Dynamic striping across all devices
● Maximizes throughput

● Intelligent prefetch

ZFS – The Last Word in File Systems

Dynamic Striping
● Automatically distributes load across all devices

Storage Pool

ZFS ZFS ZFS

Storage Pool

ZFS ZFS ZFS

11 22 33 44 11 22 33 44 55

● Writes: striped across all four mirrors
● Reads: wherever the data was written
● Block allocation policy considers:

● Capacity
● Performance (latency, BW)
● Health (degraded mirrors)

● Writes: striped across all five mirrors
● Reads: wherever the data was written
● No need to migrate existing data

● Old data striped across 1-4
● New data striped across 1-5
● COW gently reallocates old data

Add Mirror 5Add Mirror 5

ZFS – The Last Word in File Systems

ZFS Administration
● Pooled storage – no more volumes!

● All storage is shared – no wasted space, no wasted bandwidth

● Hierarchical filesystems with inherited properties
● Filesystems become administrative control points

● Per-dataset policy: snapshots, compression, backups, privileges, etc.
● Who's using all the space? du(1) takes forever, but df(1M) is instant!

● Manage logically related filesystems as a group
● Control compression, checksums, quotas, reservations, and more
● Mount and share filesystems without /etc/vfstab or /etc/dfs/dfstab
● Inheritance makes large-scale administration a snap

● Online everything

ZFS – The Last Word in File Systems

Creating Pools and Filesystems
● Create a mirrored pool named “tank”

zpool create tank mirror c0t0d0 c1t0d0

● Create home directory filesystem, mounted at /export/home

zfs create tank/home
zfs set mountpoint=/export/home tank/home

● Create home directories for several users
Note: automatically mounted at /export/home/{ahrens,bonwick,billm} thanks to inheritance

zfs create tank/home/ahrens
zfs create tank/home/bonwick
zfs create tank/home/billm

● Add more space to the pool

zpool add tank mirror c2t0d0 c3t0d0

ZFS – The Last Word in File Systems

Setting Properties
● Automatically NFS-export all home directories

zfs set sharenfs=rw tank/home

● Turn on compression for everything in the pool

zfs set compression=on tank

● Limit Eric to a quota of 10g

zfs set quota=10g tank/home/eric

● Guarantee Jazz a reservation of 20g

zfs set reservation=20g tank/home/jazz

ZFS – The Last Word in File Systems

ZFS Snapshots
● Read-only point-in-time copy of a filesystem

● Instantaneous creation, unlimited number
● No additional space used – blocks copied only when they change
● Accessible through .zfs/snapshot in root of each filesystem

● Allows users to recover files without sysadmin intervention

● Take a snapshot of Mark's home directory

zfs snapshot tank/home/marks@tuesday

● Roll back to a previous snapshot

zfs rollback tank/home/perrin@monday

● Take a look at Wednesday's version of foo.c

$ cat ~maybee/.zfs/snapshot/wednesday/foo.c

ZFS – The Last Word in File Systems

ZFS Clones
● Writable copy of a snapshot

● Instantaneous creation, unlimited number
● Ideal for storing many private copies of mostly-shared data

● Software installations
● Workspaces
● Diskless clients

● Create a clone of your OpenSolaris source code

zfs clone tank/solaris@monday tank/ws/lori/fix

ZFS – The Last Word in File Systems

ZFS Send / Receive (Backup / Restore)
● Powered by snapshots

● Full backup: any snapshot
● Incremental backup: any snapshot delta

● Very fast – cost proportional to data changed

● So efficient it can drive remote replication
● Generate a full backup

zfs send tank/fs@A >/backup/A

● Generate an incremental backup

zfs send -i tank/fs@A tank/fs@B >/backup/B-A

● Remote replication: send incremental once per minute

zfs send -i tank/fs@11:31 tank/fs@11:32 |
 ssh host zfs receive -d /tank/fs

mailto:tank/fs@A
mailto:tank/fs@A
mailto:tank/fs@B
mailto:tank/fs@11
mailto:tank/fs@11

ZFS – The Last Word in File Systems

ZFS Data Migration
● Host-neutral on-disk format

● Change server from x86 to SPARC, it just works
● Adaptive endianness: neither platform pays a tax

● Writes always use native endianness, set bit in block pointer
● Reads byteswap only if host endianness != block endianness

● ZFS takes care of everything
● Forget about device paths, config files, /etc/vfstab, etc.
● ZFS will share/unshare, mount/unmount, etc. as necessary

● Export pool from the old server

old# zpool export tank

● Physically move disks and import pool to the new server

new# zpool import tank

ZFS – The Last Word in File Systems

ZFS Data Security
● NFSv4/NT-style ACLs

● Allow/deny with inheritance

● Authentication via cryptographic checksums
● User-selectable 256-bit checksum algorithms, including SHA-256
● Data can't be forged – checksums detect it
● Uberblock checksum provides digital signature for entire pool

● Encryption (coming soon)
● Protects against spying, SAN snooping, physical device theft

● Secure deletion (coming soon)
● Thoroughly erases freed blocks

ZFS – The Last Word in File Systems

ZFS Root (OpenSolaris & S10 U4↑)
● Brings all the ZFS goodness to /

● Checksums, compression, replication, snapshots and clones
● Boot from any dataset

● Patching becomes safe
● Take snapshot, apply patch... rollback if you don't like it

● Live upgrade becomes fast
● Create clone (instant), upgrade, boot from clone
● No “extra partition”

● Based on new Solaris boot architecture
● ZFS can easily create multiple boot environments
● GRUB can easily manage them

ZFS – The Last Word in File Systems

ZFS Summary
End the Suffering ● Free Your Mind

● Simple
● Concisely expresses the user's intent

● Powerful
● Pooled storage, snapshots, clones, compression, scrubbing, RAID-Z

● Safe
● Detects and corrects silent data corruption

● Fast
● Dynamic striping, intelligent prefetch, pipelined I/O

● Open
● http://www.opensolaris.org/os/community/zfs

● Free

Thank You!

Ben Wu
Ben-Hp.Wu@Sun.Com

31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

