
Parallel Computing

Chris 2008/03/14

Outlines
 Overview

 What Is Parallel Computing?
 Why Use Parallel Computing?

 Concepts and terminology
 SISD, SIMD, MISD, MIMD
 Amdahl’s Law and Gustafson’s Law

 Parallel Computer Memory Architecture
 Shared Memory
 Distributed Memory
 Hybrid Distributed-Shared Memory

What is parallel computing ?
 Traditionally, software has been written for serial

computation:
 To be run on a single computer having a single Central

Processing Unit (CPU);
 A problem is broken into a discrete series of instructions.
 Instructions are executed one after another.
 Only one instruction may execute at any moment in time

What is parallel computing (cont.)?
 In the simplest sense, parallel computing is the

simultaneous use of multiple compute resources to solve
a computational problem.
 To be run using multiple CPUs
 A problem is broken into discrete parts that can be solved

concurrently
 Each part is further broken down to a series of instructions
 Instructions from each part execute simultaneously on different

CPUs

Why use parallel computing ?
 The primary reasons for using parallel computing:

 Save time - wall clock time
 Solve larger problems
 Provide concurrency (do multiple things at the same time)

 Other reasons might include:
 Taking advantage of non-local resources - using available

compute resources on a wide area network, or even the
Internet when local compute resources are scarce.

 Cost savings - using multiple "cheap" computing
resources instead of paying for time on a supercomputer.

 Overcoming memory constraints - single computers have
very finite memory resources. For large problems, using
the memories of multiple computers may overcome this
obstacle.

Outlines
 Overview

 What Is Parallel Computing?
 Why Use Parallel Computing?

 Concepts and terminology
 SISD, SIMD, MISD, MIMD
 Amdahl’s Law and Gustafson’s Law

 Parallel Computer Memory Architecture
 Shared Memory
 Distributed Memory
 Hybrid Distributed-Shared Memory

Concepts and terminology
 There are different ways to classify parallel

computers. One of the more widely used
classifications, in use since 1966, is called Flynn's
Taxonomy.

 Flynn's taxonomy distinguishes multi-processor
computer architectures according to how they can be
classified along the two independent dimensions of
Instruction and Data. Each of these dimensions can
have only one of two possible states: Single or
Multiple.

Single Instruction, Single Data (SISD)
 A serial (non-parallel) computer
 Single instruction: only one instruction stream is being acted on

by the CPU during any one clock cycle
 Single data: only one data stream is being used as input during

any one clock cycle
 Deterministic execution
 This is the oldest and until recently, the most prevalent form of

computer
 Examples: most PCs, single CPU workstations and mainframes

Single Instruction, Multiple Data (SIMD)
 A type of parallel computer
 Single instruction: All processing units execute the same instruction at any

given clock cycle
 Multiple data: Each processing unit can operate on a different data element
 This type of machine typically has an instruction dispatcher, a very high-

bandwidth internal network, and a very large array of very small-capacity
instruction units.

 Best suited for specialized problems characterized by a high degree of
regularity, such as image processing.

 Synchronous (lockstep) and deterministic execution
 Two varieties: Processor Arrays and Vector Pipelines

Multiple Instruction, Single Data (MISD)
 A single data stream is fed into multiple processing units.
 Each processing unit operates on the data independently via

independent instruction streams.
 Few actual examples of this class of parallel computer have ever

existed. One is the experimental Carnegie-Mellon C.mmp computer
(1971).

 Some conceivable uses might be:
 multiple frequency filters operating on a single signal stream
 multiple cryptography algorithms attempting to crack a single coded

message

Multiple Instruction, Multiple Data (MIMD)
 Currently, the most common type of parallel computer. Most modern

computers fall into this category.
 Multiple Instruction: every processor may be executing a different

instruction stream
 Multiple Data: every processor may be working with a different data

stream
 Execution can be synchronous or asynchronous, deterministic or

non-deterministic
 Examples: most current supercomputers, networked parallel

computer "grids" and multi-processor SMP computers - including
some types of PCs.

Amdahl’s Law and Gustafson’s Law
 http://www.zdnet.com.tw/white_board/intel/video-2.htm
 Sun Ni’s Law

http://www.zdnet.com.tw/white_board/intel/video-2.htm

Outlines
 Overview

 What Is Parallel Computing?
 Why Use Parallel Computing?

 Concepts and terminology
 SISD, SIMD, MISD, MIMD
 Amdahl’s Law and Gustafson’s Law

 Parallel Computer Memory Architecture
 Shared Memory
 Distributed Memory
 Hybrid Distributed-Shared Memory

Parallel Computer Memory Architectures
 Shared Memory
 Distributed Memory
 Hybrid Distributed-Shared Memory

Shared Memory
 Advantages:

 Global address space provides a user-friendly programming
perspective to memory

 Data sharing between tasks is both fast and uniform due to the
proximity of memory to CPUs

 Disadvantages:
 Primary disadvantage is the lack of scalability between

memory and CPUs. Adding more CPUs can geometrically
increases traffic on the shared memory-CPU path, and for
cache coherent systems, geometrically increase traffic
associated with cache/memory management.

 Programmer responsibility for synchronization constructs that
insure "correct" access of global memory.

 Expense: it becomes increasingly difficult and expensive to
design and produce shared memory machines with ever
increasing numbers of processors.

Distributed Memory
 Advantages:

 Memory is scalable with number of processors. Increase the
number of processors and the size of memory increases
proportionately.

 Each processor can rapidly access its own memory without
interference and without the overhead incurred with trying to
maintain cache coherency.

 Cost effectiveness: can use commodity, off-the-shelf
processors and networking.

 Disadvantages:
 The programmer is responsible for many of the details

associated with data communication between processors.
 It may be difficult to map existing data structures, based on

global memory, to this memory organization.
 Non-uniform memory access (NUMA) times

Hybrid Distributed-Shared Memory

 The shared memory component is usually a cache coherent
SMP machine. Processors on a given SMP can address that
machine's memory as global.

 The distributed memory component is the networking of
multiple SMPs. SMPs know only about their own memory - not
the memory on another SMP. Therefore, network
communications are required to move data from one SMP to
another.

 Current trends seem to indicate that this type of memory
architecture will continue to prevail and increase at the high
end of computing for the foreseeable future.

 Advantages and Disadvantages: whatever is common to both
shared and distributed memory architectures.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

