
Distributed File Systems

Chien-Min Wang
Institute of Information Science

Academia Sinica



2

Contents

n File System Overview
n Distributed File Systems: Issues
n Distributed File Systems: Case Studies
n Distributed File Systems for Clouds



Lecture 2
Distributed File Systems: Issues



4

Outline

n Introduction
n Basic Implementation Mechanisms
n Design Choices



5

Why distributed file systems?
n The data may be much larger than the storage 

space of a computer.
n The data may survive much longer than the life of 

a computer.
n A user may access his/her data from different 

machines at different geographic locations.
n A user may want to share his/her data with users 

around the world.



6

Accessing Files on Remote Sites

n FTP
l Explicit access
l User-directed connection to access remote 

resources
n We want more transparency

l Allow user to access remote files just as local 
ones



7

File Service Types1

n Upload/Download Model
l Read file: copy file from server to client
l Write file: copy file from client to server

n Advantage
l Simple

n Problems
l Wasteful: what if client needs small piece?
l Problematic: what if client doesn’t have enough space?
l Consistency: what if others need to modify the same 

file?



8

File Service Types2

n Remote Access Model
n File service provides functional interface:

l create, delete, read bytes, write bytes, etc…

n Advantages:
l Client gets only what’s needed
l Server can manage coherent view of the file system

n Problem:
l Possible server and network congestion

u Servers are accessed for duration of file access
u Same data may be requested repeatedly



9

File Servers
n File Directory Service

l Maps textual names for file to internal locations that 
can be used by file service

n File service
l Provides file access interface to clients

n Client module (driver)
l Client side interface for file and directory service
l if done right, helps provide access transparency

u e.g. under vnode layer of Linux virtual file system



10

Distributed File Systems
n Provide accesses to data stored at servers using file 

system interfaces.
n What are the file system interfaces?

l Open a file, check status on a file, close a file;
l Read data from a file;
l Write data to a file;
l Lock a file or part of a file;
l List files in a directory, delete a directory;
l Delete a file, rename a file, add a symbolic link to a file;
l etc;



11

Why is DFS useful?
n Data sharing of multiple users
n User mobility
n Location transparency
n Location independence
n Backups and centralized management

n Not all DFS are the same:
l High-speed network DFS vs. low-speed network DFS



12

Interface: File vs. Block
n Data are organized in files, which in turn are 

organized in directories
n Compare these with disk-level access or “block”

access interface: [Read/Write, LUN, block#]
n Key differences:

l Implementation of the directory/file structure and 
semantics

l Synchronization



13

Digression: Buzz Word Discussion

Very strongStrongIntegrity demands

PoorGoodSharing and Access 
Control

MoreLessEfficiency

Database serversWorkstationsClients

SCSI/FC and SCSI/IPLayer over TCP/IPTransport Protocol

Fiber Channel and EthernetEthernetAccess Medium

Disk block accessFile accessAccess Methods
SANNAS



14

Sequential Semantics of File Sharing
n Read returns result of last write
n Easily achieved if

l Only one server
l Clients do not cache data

n BUT
l Performance problems if no cache

u Obsolete data
l We can write-through

u Must notify clients holding copies
u Requires extra state, generates extra traffic



15

Session Semantics of File Sharing

n Relax the rules
n Changes to an open file are initially visible 

only to the process (or machine) that 
modified it.

n Last process to modify the file wins. 



16

Other solutions

n Make files immutable
l Aids in replication
l Does not help with detecting modification

n Use atomic transactions
l Each file access is an atomic transaction
l If multiple transactions start concurrently

u Resulting modification is serial



17

File Usage Patterns

n We can’t have the best of all worlds
n Where to compromise?

l Semantics vs. efficiency
l Efficiency = client performance, network traffic, 

server load
n Understand how files are used



18

File Usage
n Most files are <10 Kbytes

l 2005: average size of 385,341 files =197 KB
l 2007: average size of 440,519 files =451 KB
l Feasible to transfer entire files (simpler)
l Still have to support long files

n Most files have short lifetimes
l Perhaps keep them local

n Few files are shared
l Overstated problem
l Session semantics will cause no problem most of the 

time



19

Outline

n Introduction
n Basic Implementation Mechanisms
n Design Choices



20

Components in a DFS
n Client side:

l What has to happen to enable applications access a 
remote file in the same way as accessing a local file

n Communication layer:
l Just TCP/IP or some protocol at higher abstraction

n Server side:
l How does it service requests from the client



21

Client Side Example: UNIX

n Accessing remote files in the same way as 
accessing local files à kernel support
l Vnode interface

read(fd,..) struct file

Mode
Vnode
offset

V_data

fs_op

struct vnode

{int (*open)();
int (*close)();
int (*read)();
int (*write)();
int (*lookup)();
…
}

process
file table



22

VFS Interception

n VFS provides “pluggable” file systems
n Standard flow of remote access

l User process calls read()
l Kernel dispatches to VOP_READ() in some 

VFS
l nfs_read()

u check local cache
u send RPC to remote NFS server
u put process to sleep



23

VFS Interception

n Standard flow of remote access (continued)
l server interaction handled by kernel process

u retransmit if necessary
u convert RPC response to file system buffer
u store in local cache
u wake up user process

l nfs_read()
u copy bytes to user memory



24

Communication Layer Example: RPC

n Failure handling: timeout and re-issuance 
n RPC over UDP vs. RPC over TCP

xid
“call”
service
version
procedure
auth-info
arguments
…

xid
“reply”
reply_stat
auth-info
results

…

RPC call RPC reply



25

Extended Data Representation (XDR)
n Argument data and response data in RPC are 

packaged in XDR format
l Integers are encoded in big-endian
l Strings: len followed by ascii bytes with NULL padded 

to four-byte boundaries
l Arrays: 4-byte size followed by array entries
l Opaque: 4-byte len followed by binary data

n Marshalling and un-marshalling
n Extra overhead in data conversion to/from XDR



26

NFS RPC Calls
n NFS / RPC using XDR / TCP/IP

n fhandle: 32-byte opaque data (64-byte in v3)
l What’s in the file handle

status, fattrfhandle, offset, count, 
data

write
status, fhandle, fattrdirfh, name, fattrcreate

status, fattr, datafhandle, offset, countread
status, fhandle, fattrdirfh, namelookup
ResultsInput argsProc.



27

NFS Operations
n V2: 

l NULL, GETATTR, SETATTR
l LOOKUP, READLINK, READ
l CREATE, WRITE, REMOVE, RENAME
l LINK, SYMLINK
l READIR, MKDIR, RMDIR
l STATFS

n V3: add
l READDIRPLUS, COMMIT
l FSSTAT, FSINFO, PATHCONF 



28

Server Side Example: mountd and nfsd

n Mountd: provides the initial file handle for the 
exported directory
l Client issues nfs_mount request to mountd
l Mountd checks if the pathname is a directory and if the 

directory is exported to the client

n nfsd: answers the rpc calls, gets reply from local 
file system, and sends reply via rpc
l Usually listening at port 2049

n Both mountd and nfsd use underlying RPC 
implementation



29

NFS Client Server Interactions

n Client machine:
l Application à nfs_vnopsà nfs client code à

rpc client interface
n Server machine:

l rpc server interface à nfs server code à
ufs_vnopsà ufs code à disks



30

NFS File Server Failure Issues

n Semantics of file write in V2
l Bypass UFS file buffer cache

n Semantics of file write in V3
l Provide “COMMIT” procedure

n Server-side retransmission cache
l Idempotent vs. non-idempotent requests



31

Outline

n Introduction
n Basic Implementation Mechanisms
n Design Choices



32

Topic 1: Naming
n NFS: per-client linkage

l Server: export /root/fs1/
l Client: mount server:/root/fs1 /fs1 à fhandle

n AFS: global name space
l Name space is organized into Volumes

u Global directory /afs; 
u /afs/cs.wisc.edu/vol1/… ; /afs/cs.stanfod.edu/vol1/…

l Each file is identified as <vol_id, vnode#, vnode_gen>
l All AFS servers keep a copy of “volume location 

database”, which is a table of vol_idà server_ip
mappings



33

Location Transparency
n NFS: no transparency

l If a directory is moved from one server to another, 
client must remount

n AFS: transparency
l If a volume is moved from one server to another, only 

the volume location database on the servers needs to be 
updated

l Implementation of volume migration
l File lookup efficiency

n Are there other ways to provide location 
transparency?



34

Topic 2: User Authentication and Access 
Control
n User X logs onto workstation A, wants to access files on 

server B
l How does A tell B who X is
l Should B believe A

n Choices made in NFS v2
l All servers and all client workstations share the same 

<uid, gid> name space à B send X’s <uid,gid> to A
u Problem: root access on any client workstation can lead to 

creation of users of arbitrary <uid, gid>
l Server believes client workstation unconditionally

u Problem: if any client workstation is broken into, the 
protection of data on the server is lost;

u <uid, gid> sent in clear-text over wire à request packets can 
be faked easily



35

User Authentication

n How do we fix the problems in NFS v2
l Hack1: root remapping à strange behavior
l Hack 2: UID remapping à no user mobility
l Real Solution: use a centralized 

Authentication/Authorization/Access-control 
(AAA) system



36

Example AAA System: NTLM

n Microsoft Windows Domain Controller
l Centralized AAA server
l NTLM v2: per-connection authentication

client
file server

Domain Controller

1 2 3
4

5
6 7



37

A Better AAA System: Kerberos

n Basic idea: shared secrets
l User prove to KDC who he is; KDC generates shared 

secret between client and file server

client

T
ticket server
generates S

“Need to access fs
”

K client[S
] file serverK

fs[S]

S: specific to {client,fs} pair; 
“short-term session-key”; has expiration time (e.g. 8 hours);

KDC



38

Kerberos Interactions

client
T

ticket server
generates S

“Need to access fs”

Kclient[S], ticket = Kfs[ use S for client]

file server
client

1.

2.
ticket=Kfs[use S for client], S[client, time]

S{time}

•why “time”: guard against replay attack
•mutual authentication
•File server doesn’ t store S, which is specific to {client, fs}
•Client doesn’ t contact “ticket server” every time it contacts fs

KDC



39

Kerberos: User Log-on Process

n How does user prove to KDC who the user 
is
l Long-term key: 1-way-hash-func(passwd)
l Long-term key comparison happens once only, at 

which point the KDC generates a shared secret for the 
user and the KDC itself à ticket-granting ticket, or 
“logon session key”

l The “ticket-granting ticket” is encrypted in KDC’s
long-term key



40

Topic 3: Operator Batching

n Should each client/server interaction 
accomplish one file system operation or 
multiple operations?

n Advantage of batched operations
n How to define batched operations



41

Examples of Batched Operators

n NFS v3: 
l Readdirplus

n NFS v4:
l Compound RPC calls

n CIFS:
l “AND-X” requests



42

Topic 4: Client-Side Caching
n Why is client-side caching necessary
n What are cached

l Read-only file data and directory data à easy
l Data written by the client machine à when are data 

written to the server? What happens if the client 
machine goes down?

l Data that are written by other machines à how to know 
that the data have been changed?  How to ensure data 
consistency?

l Is there any pre-fetching?



43

Client Caching in NFS v2
n Cache both clean and dirty file data and file attributes
n File attributes in the client cache are expired after 60 

seconds
n File data are checked against the modified-time in file 

attributes (which could be a cached copy)
l Changes made on one machine can take up to 60 secs to be 

reflected on another machine

n Dirty data are buffered on the client machine till file close 
or up to 30 seconds
l If the machine crashes before then, the changes are lost
l Similar to UNIX FFS local file system behavior



44

Implication of NFS v2 Client Caching

n Data consistency guarantee is very poor
l Simply unacceptable for some distributed applications
l Productivity apps tend to tolerate such loose 

consistency

n Different client implementations implement the 
“prefetching” part differently

n Generally clients do not cache data on local disks



45

Client Caching in AFS
n Client caches both clean and dirty file data and 

attributes
l The client machine uses local disks to cache data
l When a file is opened for read, the whole file is fetched 

and cached on disk
u Why?  What’s the disadvantage of doing so?

n However, when a client caches file data, it obtains 
a “callback” on the file

n In case another client writes to the file, the server 
“breaks” the callback
l Similar to invalidations in distributed shared memory 

implementations
n Implications: file server must keep states!



46

AFS RPC Procedures
n Procedures that are not in NFS

l Fetch: return status and optionally data of a file or 
directory, and place a callback on it

l RemoveCallBack: specify a file that the client has 
flushed from the local machine

l BreakCallBack: from server to client, revoke the 
callback on a file or directory
u What should the client do if a callback is revoked?

l Store: store the status and optionally data of a file

n Rest are similar to NFS calls



47

Failure Recovery in AFS
n What if the file server fails

l Two candidate approaches to failure recovery
n What if the client fails
n What if both the server and the client fail
n Network partition

l How to detect it? How to recover from it?
l Is there anyway to ensure absolute consistency in the 

presence of network partition?
u Reads
u Writes

n What if all three fail: network partition, server, 
client



48

Key to Simple Failure Recovery
n Try not to keep any state on the server
n If you must keep some states on the server

l Understand why and what states the server is 
keeping

l Understand the worst case scenario of no state 
on the server and see if there are still ways to 
meet the correctness goals

l Revert to this worst case in each combination of 
failure cases



49

Topic 5: File Access Consistency
n In UNIX local file system, concurrent file reads 

and writes have “sequential” consistency 
semantics
l Each file read/write from user-level app is an atomic 

operation
u The kernel locks the file vnode

l Each file write is immediately visible to all file readers

n Neither NFS nor AFS provides such concurrency 
control
l NFS: “sometime within 30 seconds”
l AFS: session semantics for consistency



50

Session Semantics in AFS
n What it means:

l A file write is visible to processes on the same box 
immediately, but not visible to processes on other 
machine until the file is closed

l When a file is closed, changes are visible to new opens, 
but are not visible to “old” opens

l All other file operations are visible everywhere 
immediately

n Implementation
l Dirty data are buffered at the client machine until file 

close, then flushed back to server, which leads the 
server to send “break callback” to other clients

l Problems with this implementation



51

Access Consistency in “Sprite”

n Sprite: a research file system developed in UC 
Berkeley in late 80’s

n Implements “sequential” consistency
l Caches only file data, not file metadata
l When server detects a file is open on multiple machines 

but is written by some client, client caching of the file is 
disabled; all reads and writes go through the server

l “Write-back” policy otherwise
u Why?



52

Implementing Sequential Consistency

n How to identify out-of-date data blocks
l Use file version number
l No invalidation
l No issue with network partition

n How to get the latest data when read-write 
sharing occurs
l Server keeps track of last writer



53

Implication of “Sprite” Caching
n Server must keep states!

l Recovery from power failure
l Server failure doesn’t impact consistency
l Network failure doesn’t impact consistency

n Price of sequential consistency: no client caching 
of file metadata; all file opens go through server
l Performance impact
l Suited for wide-area network?



54

Access Consistency in AFS v3
n Motivation

l How does one implement sequential 
consistency in a file system that spans multiple 
sites over WAN
u Why Sprite’s approach won’ t work
u Why AFS v2 approach won’ t work
u Why NFS approach won’ t work

n What should be the design guidelines?
l What are the common share patterns?



55

“Tokens” in AFS v3
n Callbacks are evolved into 4 kinds of “Tokens”

l Open tokens: allow holder to open a file; submodes: 
read, write, execute, exclusive-write

l Data tokens: apply to a range of bytes
u “read” token: cached data are valid
u “write” token: can write to data and keep dirty data at client

l Status tokens: provide guarantee of file attributes
u “read” status token: cached attribute is valid
u “write” status token: can change the attribute and keep the 

change at the client
l Lock tokens: allow holder to lock byte ranges in the file



56

Compatibility Rules for Tokens
n Open tokens: 

l Open for exclusive writes are incompatible with any 
other open, and “open for execute” are incompatible 
with “open for write”

l But “open for write” can be compatible with “open for 
write” --- why?

n Data tokens: R/W and W/W are incompatible if 
the byte range overlaps

n Status tokens: R/W and W/W are incompatible
n Data token and status token: compatible or 

incompatible?



57

Token Manager

n Resolve conflicts: block the new requester 
and send notification to other clients’ tokens

n Handle operations that request multiple 
tokens
l Example: rename
l How to avoid deadlocks



58

Failure Recovery in Token Manager

n What if the server fails
n What if a client fails
n What if network partition happens



59

Topic 6: File Locking
n Issues

l Whole file locking or byte-range locking
l Mandatory or advisory

u UNIX: advisory
u Windows: if a lock is granted, it’s mandatory on all other 

accesses

n NFS: network lock manager (NLM)
l NLM is not part of NFS v2, because NLM is stateful
l Provides both whole file and byte-range locking
l Advisory
l Relies on “network status monitor” for server 

monitoring



60

Issues in Locking Implementations

n Synchronous and Asynchronous calls
l NLM provides both

n Failure recovery
l What if server fails

u Lock holders are expected to re-establish the locks 
during the “grace period”, during which no other 
locks are granted

l What if a client holding the lock fails
l What if network partition occurs



61

Wrap up: Comparing the File Systems

n Caching: 
l NFS
l AFS
l Sprite

n Consistency
l NFS
l AFS
l Sprite
l AFS v3

n Locking



62

Wrap up: Comparison with the Web

n Differences:
l Web offers HTML, etc.  DFS offers binary data only
l Web has a few but universal clients; DFS is 

implemented in the kernel
n Similarities:

l Caching with TTL is similar to NFS consistency
l Caching with IMS-every-time is similar to Sprite 

consistency
u As predicted in AFS studies, there is a scalability problem here

n Security mechanisms
l AAA similar
l Encryption?



63

Topic 7: Stateful or stateless design?
n Stateful

l Server maintains client-specific states

n Shorter requests
n Better performance in processing requests
n Cache coherence is possible

l Server can know who’s accessing what

n File locking is possible



64

Topic 7: Stateful or stateless design?
n Stateless

l Server maintains no information on client accesses
n Each request must identify file and offsets
n Server can crash and recover

l No state to lose
n Client can crash and recover
n No open/close needed

l They only establish state
n No server space used for state

l Don’ t worry about supporting many clients
n Problems if file is deleted on server
n File locking not possible


