
Distributed File Systems

Chien-Min Wang
Institute of Information Science

Academia Sinica

2

Contents

n File System Overview
n Distributed File Systems: Issues
n Distributed File Systems: Case Studies
n Distributed File Systems for Clouds

Lecture 1
File System Overview

4

Outline

n Files and Directories
n Implementation Issues
n Example File Systems

5

Why file systems?
n The data must survive after the termination

of the process using it.
n It must be possible to store very large

amount of data.
n Multiple processes must be able to access

data concurrently.

ðSolution is to store those data in units called
files on disks and other media.

6

Files: an abstraction
n A (potentially) large amount of data that lives a

(potentially) very long time.
l Often much larger than the memory of the computer.
l Often much longer than any computation.
l Sometimes longer than life of the machine itself.

n (Usually) organized as a linear array of bytes or
blocks.
l Internal structure is imposed by applications.
l (Occasionally) blocks may be variable length.

n (Often) requiring concurrent access by multiple
processes
l Even by processes on different machines!

7

File Systems

n Files are managed by the Operating System.
n The part of the Operating System that dealt

with files is known as the File System.
l A file is a collection of disk blocks.
l File System maps file names and offsets to disk

blocks.
n How files are structured, used, protected

and implemented are major concerns of file
systems.

8

Files: Naming1

n The exact rules of naming depend on the
operating system.

n However, most of them allow files to be
l 1 – 8 characters
l Digits and several special symbols
l Modern ones support up to 255 characters

n Some file systems are case sensitive.
l DOS, Windows: Case insensitive
l UNIX, Linux: Case sensitive

9

Files: Naming2

n Many operating systems support two-part
file names.
l Parts are separated by a period (.)
l Format: <file name>.<extension>
l Extension indicates something about the file.

n Not all operation systems are aware of
extensions.
l Unix or Linux does not depends on extensions.
l But some applications may depend on

extensions.

10

Files: Types
n 2 major types

l Regular files – ones that contain user data. These can be
either text (ASCII) or binary.

l Directories – are special system files which are used to
maintain the structure of the file system.

n In Unix, it also has
l Character files – are used to model serial I/O devices

such as terminals and printers
/dev/tty, /dev/lp, /dev/net

l Block files – are used to model disks
/dev/hd1, /dev/hd2

11

Files: Attributes
n A file includes a set of other characteristics than

just name and extension
n Some common attributes

l Owner – current owner of the file
l Creator – the person who creates the file
l Protection – who can access and who can’t access
l Size – length of the file in number of bytes
l Read-only flag – can it be modified or not
l Hidden flag – display or not when listed
l Archive flag – to be backup or not
l Last modified date, created date, etc.

12

Files: Access

n Sequential Access
l Read all the data starting from the beginning
l Used in early days with magnetic tapes
l Example: simple text files

n Random Access
l Can read the data in a file out of order
l Were possible with the introduction of

magnetic disks
l Example: Data bases, movies

13

Files: Operations1

n File systems allow operations to store and retrieve
data from files
l Create – create a new file with no data and set initial

attributes
l Delete – remove the file from system and free up disk

space
l Open – gain access to a file
l Read – return a sequence of bytes from a file
l Write – replace a sequence of bytes in a file and/or

append to the end
l Close – relinquish access to a file

14

Files: Operations2

l Seek – reposition file pointer for subsequent reads and
writes; used in random access

l Get attributes – get the attributes of a file
l Set attributes – set the attributes of a file
l Rename – change the name or the extension of a file

15

Directories

n Used to organize or keep track of files.
n Are also called folders.

l DOS, UNIX and Linux call them as directories.
l Windows call them as folders.

n Most operating systems consider directories
as files.

16

Directories: Single Level System
n Simplest form of directory system where a single

directory contain all the files
n This single directory is called the root.
n Problem – in a multi-user system, it can’t have

files with the same name

Root
/

t.txt a.exe cal.pdf cal.exe

17

Directories: Two Level System
n To avoid the conflict, each user is given a separate

directory.

Root
/

t.txt

Tom Jerry Alex

a.exe cal.pdf cal.exe cal.exe cal.pdf t.txt

18

Directories: Hierarchical Structure
n Two level directory structure is not enough when

users want to manage their own files.
n Almost all the commercial operating systems

support multiple directory levels.
n However, CD-ROM file system has a limit in

number of levels in the hierarchy.
l 8 levels, including the root directory, in the ISO

9660 file system.

Root
/

t.txt

Tom Jerry Alex

a.exe cal.pdf cal.exe t.txtDFS

L1.ppt L2.ppt L3.ppt

CC

L1.ppt L2.ppt L3.ppt

20

Directory Considerations
n Efficiency – locating a file quickly.
n Naming – convenient to users.

l Separate users can use the same name for
separate files.

l The same file can have different names for
different users.

l Names need only be unique within a directory
n Grouping – logical grouping of files by

properties
l e.g., all Java programs, all games, …

21

Directories: Operations

n Create – create a new directory
n Delete – delete an existing directory
n List – enumerate directory entries
n Lookup – find an existing entry
n Rename – change the name of the directory
n Link – allow files to appear in more than

one directories; related to file sharing.

22

Directories: Path Name1

n When files are in a directory tree, there should be
a mechanism to name them.

n Absolute path names
l Path from the root to the directory

/Tom/DFS/L1.ppt

n Relative path names
l Relative to the current working directory
l If currently in /Tom/DFS directory, the path name is

L1.ppt

l If currently in /Tom directory, the path name is
DFS/L1.ppt

23

Directories: Path Name2

n Regardless of the current working directory,
absolute path names will always work.

n There are two special entries in each directory
l . (dot) – refers to the current working directory
l .. (double dot/dotdot) – refers to the parent directory
l Examples: If currently in /Tom directory

./DFS/L1.ppt

../Jerry/cal.exe

24

Path Name Translation
n Assume that I want to open “/home/lauer/foo.c”

fd = open(“/home/lauer/foo.c”, O_RDWR);
l Opens directory “/” – the root directory is in a known place on

disk
l Search root directory for the directory home and get its location
l Open home and search for the directory lauer and get its location
l Open lauer and search for the file foo.c and get its location
l Open the file foo.c
l The process needs the appropriate permissions at every step.

n It spends a lot of time walking down directory paths.
l This is why open calls are separate from other file operations.
l File System attempts to cache prefix lookups to speed up common

searches.
l Once open, file system caches the metadata of the file.

25

Outline

n Files and Directories
n Implementation Issues
n Example File Systems

26

Implementation of Files
n Files are stored as blocks on the disk.
n Need to keep track of where a file is located on the

disks.
l Map file abstraction to physical disk blocks.

n Goals
l Efficient in time, space, use of disk resources
l Fast enough for application requirements
l Scalable to a wide variety of file sizes

u Many small files (< 1 page)
u Huge files (100’s of gigabytes, terabytes, spanning disks)
u Everything in between

27

File Allocation Schemes
n Contiguous

l Blocks of file stored in consecutive disk sectors
l Directory points to first entry

n Linked
l Blocks of file scattered across disk, as linked list
l Directory points to first entry

n Indexed
l Separate index blocks contain pointers to file blocks
l Directory points to index blocks

28

Contiguous Allocation
n Ideal for large and static files

l Static Databases, OS code
l Multi-media video and audio
l CD-ROM, DVD-ROM

n Simple address calculation
l Directory entry points to first block
l File block i ⇔ disk block address

n Fast multi-block reads and writes
l Minimize seeks between blocks

29

Contiguously Allocated Files

30

Contiguous Allocation: File Creation

n Search for an empty sequence of blocks
l First-fit
l Best-fit

n Prone to fragmentation when …
l Files come and go

u For example, a new file needs 7 contiguous blocks.

l Files change size
u For example, the file tr changes its size to 6 blocks.

31

Contiguous Allocation – Extents
n Extent: a contiguously allocated subset of a file
n Directory entry points to

l (For file with one extent) the extent itself
l (For file with multiple extents) pointer to an extent

block describing multiple extents

n Advantages
l Speed, ease of address calculation of contiguous file
l Avoids (some of) the fragmentation issues
l Can be adapted to support files across multiple disks

32

Contiguous Allocation – Extents
n Disadvantages

l Too many extents ⇒ degenerates to indexed allocation
u As in Unix-like systems, but not so well

n Popular in 1960s & 70s
n Currently used for large files in NTFS
n Rarely mentioned in textbooks

33

Linked Allocation
n Blocks scattered

across disk
n Each block contains

pointer to next block
n Directory points to

first and last blocks
n Block header:

l Pointer to next block
l ID and block number

of the file

10

16

01

25

34

Linked Allocation

n Advantages
l No space fragmentation!
l Easy to create and extend files
l Ideal for lots of small files

n Disadvantages
l Lots of disk arm movement
l Space taken up by links
l Sequential access only!

35

Linked Allocation – FAT

n Instead of link on each
block, put all links in
one table
l the File Allocation

Table — i.e., FAT
n One entry per physical

block in disk
l Directory points to first

& last blocks of file
l Each block points to

next block (or EOF)

36

FAT File Systems
n Advantages

l Advantages of Linked File System
l FAT can be cached in memory
l Searchable at CPU speeds, pseudo-random access

n Disadvantages
l Limited size, not suitable for very large disks
l FAT cache describes entire disk, not just open files!
l Not fast enough for large databases

n Used in MS-DOS, early Windows systems

37

Indexed Allocation

n i-node:
l Part of file metadata
l Data structure lists the

address of each block
of a file

n Advantages
l True random access
l Only i-nodes of open

files need to be cached
l Supports small and

large files

38

Unix/Linux i-nodes

n Direct blocks:
l Pointers to first n

blocks
n Single indirect table:

l Extra block containing
pointers to blocks
n+1 .. n+m

n Double indirect table:
l Extra block containing

single indirect blocks
n …

39

Indexed Allocation

n Access to every block of file is via i-node
n Disadvantage

l Not as fast as contiguous allocation for large
databases
u Requires reference to i-node for every access

vs.

u Simple calculation of file block to disk block
address

40

Free Block Management
n Bitmap

l Very compact on disk
l Expensive to search
l Supports contiguous allocation

n Free list
l Linked list of free blocks

u Each block contains pointer to next free block

l Only head of list needs to be cached in memory
l Very fast to search and allocate
l Contiguous allocation vary difficult

41

Free Block Management: Bit Vector

…
0 1 2 n-1

bit[i] =
6

7
8 0 ⇒ block[i] free

1 ⇒ block[i] occupied

Free block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

42

Free Block Management: Bit Vector

n Bit map
l Must be kept both in memory and on disk
l Copy in memory and disk may differ
l Cannot allow for block[i] to have a situation

where bit[i] = 1 in memory and bit[i] = 0 on
disk.

l How about bit[i] = 0 in memory and bit[i] = 1
on disk? Is it ok?

43

Free Block Management: Bit Vector

n Solution:
l Set bit[i] = 1 on disk
l Allocate block[i]
l Set bit[i] = 1 in memory
l Similarly for set of contiguous blocks

n Potential for lost blocks in event of crash!
l Discussion – How do we solve this problem?

44

Free Block Management: Linked List
n Linked list of free blocks

l Not in order!

n Cache first few free blocks in
memory

n Head of list must be stored
both
l On disk
l In memory

n Each block must be written to
disk when freed

n Potential for losing blocks?

45

Bad Block Management
n Bad blocks on disks are inevitable

l Part of manufacturing process (less than 1%)
l Most are detected during formatting
l Occasionally, blocks become bad during operation

n Manufacturers typically add extra tracks to disks
l Physical capacity = (1 + x) * rated_capacity

n Who handles bad blocks?
l Disk controller: Bad block list maintained internally

u Automatically substitutes good blocks
l Formatter: Re-organize track to avoid bad blocks
l OS: Bad block list maintained by OS, bad blocks never

used

46

Bad Block Management in
Contiguous Allocation File Systems

n Bad blocks must be concealed
u Foul up the block-to-sector calculation

n Methods
u Look-aside list of bad sectors

n Check each sector request against hash table
n If present, substitute a replacement sector behind the scenes

u Spare sectors in each track, remapped by formatting

n Handling
u Disk controller, invisible to OS
u Lower levels of OS; invisible to most of file system or

application

47

Bad Block Management in
Linked and FAT Systems

n In OS:– format all sectors of disk
l Don’t reserve any spare sectors

n Allocate bad blocks to a hidden file for the
purpose
l If a block becomes bad, append to the hidden file

n Advantages
l Very simple
l No look-aside or sector remapping needed
l Totally transparent without any hidden mechanism

48

Implementation of Directories
n A list of [name, information] pairs

l Must be scalable from very few entries to very many
n Name:

l User-friendly, variable length
l Any language
l Fast access by name

n Information:
l File metadata (itself)
l Pointer to file metadata block (or i-node) on disk
l Pointer to first & last blocks of file
l Pointer to extent block(s)
l …

49

Very Simple Directory

n Short, fixed length names
n Attribute & disk addresses contained in directory
n MS-DOS, etc.

name1 attributes
name2 attributes
name3 attributes
name4 attributes
… …

50

Simple Directory

n Short, fixed length names
n Attributes in separate blocks (e.g., i-nodes)

l Attribute pointers are disk addresses (or i-node numbers)

n Older Unix versions, MS-DOS, etc.

name1
name2
name3
name4
…

i-node

i-node

i-node

i-node

Data structures
containing attributes

51

More Interesting Directory

n Variable length file names
l Stored in heap at end

n Modern Unix, Windows
n Linear or logarithmic

search for name
n Compaction needed after

l Deletion, Rename

attributes
attributes
attributes
attributes

… …
name1 longer_na
me3 very_long_n
ame4 name2 …

52

Very Large Directories

n Hash-table implementation
n Each hash chain like a small directory with

variable-length names
n Must be sorted for listing

53

Outline

n Files and Directories
n Implementation Issues
n Example File Systems

54

Scalability of File Systems
n Question: How large can a file be?
n Answer: limited by

l Number of bits in length field in file metadata
l Size & number of block entries in FAT or i-node

n Question: How large can file system be?
n Answer: limited by

l Number of bits in length field in file system metadata
l Size & number of block entries in FAT or i-node

55

MS-DOS & Windows
n FAT-12 (primarily on floppy disks):

l 4096 512-byte blocks
l Only 4086 blocks usable!

n FAT-16 (early hard drives):

l 64 K blocks; block sizes up to 32 K bytes
l 2 GBytes max per partition, 4 partitions per disk

n FAT-32 (Windows 95)

l 228 blocks; up to 2 TBytes per disk
l Max size FAT requires 232 bytes in RAM!

56

MS-DOS File System

n Maximum partition for different block sizes
n The empty boxes represent forbidden combinations

57

System V File System
n The file system resides on a single logical disk or

partition
n A partition can be viewed as a linear array of

blocks
l block represents the granularity of space allocation for

files
l a disk block is 512 bytes * some power of 2
l physical block number identifies a block on a given

disk partition
l physical block number can be translated into physical

location on a partition

58

System V: File System Layout

n Boot area
l Code required to bootstrap the operating system

n Superblock
l Attributes and metadata of the file system itself

n inode list
l a linear array of inodes

n data blocks
l data blocks for files and directories, and indirect blocks

B S inode list data blocks

59

System V: Superblock

n One Superblock per file system
n It contains metadata about file system

l Size in blocks of the file system
l Size in blocks of the inode list
l Number of free blocks and inodes
l Free block list
l Free inode list

n The kernel reads the superblock and stores
it in memory when mounting the file system

60

System V: Inode

n Each file has an unique inode associated
with it.

n Inode contains metadata of the file.
n On-disk inode refers to inode stored in disk

within the inode list.
n In-core inode refers to inode stored in

memory when a file is open.

61

System V: On-disk inode

n The size of on-disk inode is 64 bytes

:::
Array of block addresses39di_addr
Size in bytes4di_size
Owner GID2di_gid
Owner UID2di_uid
File type, permissions2di_mode

DescriptionSizeField

62

System V: On-disk inode
n Unix files are not stored in contiguous blocks.
n File system need to maintain a map of the disk

location of every block of the file.

0
1
2
3
4
5

7
6

8
9

11
12

indirect
Double indirect
triple indirect

10

63

System V: In-core inode

n It contains all the fields of on-disk inode,
and some additional fields, such as
l The status of the in-core inode (whether the

inode is locked, which process is waiting, etc.)
l The logical device number containing the file
l The inode number of the file
l Pointers to keep the inode on a free list
l Pointers to keep the inode on a hash queue.
l Block number of last block read.

64

System V: Inode Operations

n Inode lookup: lookuppn()&s5lookup()
l translates a pathname and returns a pointer to

the vnode of the desired file
n allocate inode: iget()

l read an inode from disk into memory by inode
number or initialize an empty inode if not
found

n release inode: iput()
l kernal writes the inode to disk if the in-core

copy differs from the disk copy

65

System V: File Operations
n Read and write system calls use the following

arguments
l File descriptor, user buffer address, count of number of

byte transferred
n Offset is obtained from the opened file object
n Offset is advanced to the number of byte

transferred
n For random I/O “lseek” is used to set the offset to

desired location
n Kernel verifies the file mode and puts an exclusive

lock on the inode for serialized access
n File read: s5read()

66

System V: Directories
n A file system is organized as a hierarchy of

directories.
n It starts from a single directory called root

(represented by a /).
n A directory is a file containing list of files and

subdirectories.
n It has fixed size records of 16 bytes, each which

contains
l a 14-byte filename
l a 2-byte inode number (216 = 65536 files), acts as a

pointer to where the system can find info about the file.

67

System V: Directories
n 0 inode number means the file no longer exists.
n The directory itself and its parent directory are in

the first two entries.

File265
Subdirectory1110
Deleted file0
File19
..38
.73

68

System V: Summary

n Simple design
n Single superblock can be corrupted
n Grouping of inode in the beginning requires

long seek time between inode read and file
access

n Fixed block size wastes space
n Filename is limited to 14 characters
n Number of inodes are limited to 65535

69

The ext2 File System

n The Second Extended File system was
devised (by Ré my Card) as an extensible
and powerful file system for Linux.

n It is also the most successful file system so
far in the Linux community and is the basis
for all of the currently shipping distributions.

n Due to this, it is extremely well integrated
into the kernel, with good performance
enhancements.

70

Ext2: File System Layout

BLOCK GP BLOCK GP BLOCK GP BLOCK
BS

0 1 N-1 N

SUPER BLOCK FS
DESCRIPTOR

BLOCK
BITMAP

INODE
BITMAP

INODE
TABLE

DATA BLOCKS

71

Ext2: File System Layout
n The Boot Sector block is optional, not required if

you do not want to make this partition bootable.
n Each block group contains

l a redundant copy of crucial file system control
information (superblock and the file system descriptors)

l a part of the file system (a block bitmap, an inode
bitmap, a piece of the inode table, and data blocks)

n Having multiple block groups helps improves
reliability (since backups of the superblock are
there) and even speeds up access as the inode table
is near the data blocks – reduced seek time for
data blocks.

72

Ext2: Block Group
n Superblock – The file system header, identifies the

file system and provides relevant information.
n FS descriptor – Pointers to the bitmaps and table

in the block group.
n Block bitmap – Block usage information, tells

which blocks in the block group are empty or used
n Inode bitmap – Inode usage information
n Inode table – Table of the inodes. Each inode

provides information about a file.
n Data blocks – blocks where the data is stored!

73

Ext2: Superblock
n The Superblock contains a description of the basic

size and shape of this file system.
n System keeps multiple copies of the Superblock in

many Block Groups.
n It holds the following information :
Ø Magic Number : 0xef53 for the current implementation.
Ø Revision Level : for checking compatibility
Ø Mount Count and Maximum Mount Count : to ensure

that the file system is periodically checked
Ø Block Group Number : The Block Group that holds this

copy of Superblock.

74

Ext2: Superblock
Ø Block Size : size of blocks for the file system in bytes.
Ø Blocks per Group : Number of blocks in a group –

fixed when file system is created.
Ø Free Blocks : Number of free blocks in the system –

excludes the blocks reserved for root
Ø Free Inodes : Number of free Inodes in the system –

again excludes inodes reserved for root
Ø First Inode : The first Inode in an EXT2 root file system

would be the directory entry for the '/' directory.

75

Ext2: FS Descriptor
n The FS Descriptor contains the following:
Ø Blocks Bitmap : block number of block allocation

bitmap
Ø Inode Bitmap : block number of Inode allocation

bitmap
Ø Inode Table : The block number of the starting block

for the Inode table for this Block Group.
Ø Free blocks count : number of free data blocks in the

Group
Ø Free Inodes count : number of free inodes in the Group
Ø Used directory count : number of inodes allocated to

directories

76

Ext2: Inode

Direct Blocks

Mode
Owner Info.

Size
Timestamps

Indirect Blocks

Double Indirect

Triple Indirect

Data

Data

Data

Data

Data

77

Ext2: Inode
n Direct/Indirect Blocks : Pointers to the blocks that

contain the data that this Inode is describing.
n Timestamp : The time that this Inode was created

and the last time that it was modified.
n Size : The size of this file in bytes.
n Owner info : This stores user and group identifiers

of the owners of this file or directory
n Mode : This holds two pieces of information; what

this inode describes and the permissions that users
have on it.

78

Ext2: Directories
i1 15 5 file i2 40 14 arbit

INODE TABLE

79

Mounting
mount –t type device pathname

n Attach device (which contains a file system of
type type) to the directory at pathname
l File system implementation for type gets loaded and

connected to the device
l Anything previously below pathname becomes hidden

until the device is un-mounted again
l The root of the file system on device is now accessed

as pathname
n E.g.,

mount –t iso9660 /dev/cdrom /myCD

80

Mounting
n OS automatically mounts devices in mount table

at initialization time
l /etc/fstab in Linux

n Users or applications may mount devices at run
time, explicitly or implicitly — e.g.,
l Insert a floppy disk
l Plug in a USB flash drive

n Type may be implicit in device
n Windows equivalent

l Map drive

81

Virtual File Systems

n Virtual File Systems (VFS) provide object-
oriented way of implementing file systems.

n VFS allows same system call interface to be
used for different types of file systems.

n The API is to the VFS interface, rather than
any specific type of file system.

n Mounting: formal mechanism for attaching
a file system to the Virtual File interface.

82

VFS: Schematic View

83

Linux Virtual File System

n A generic file system interface provided by
the kernel

n Common object framework
l superblock: a specific, mounted file system
l i-node object: a specific file in storage
l d-entry object: a directory entry
l file object: an open file associated with a

process

84

Linux Virtual File System

n VFS operations
l super_operations:

u read_inode, sync_fs, etc.

l inode_operations:
u create, link, etc.

l d_entry_operations:
u d_compare, d_delete, etc.

l file_operations:
u read, write, seek, etc.

85

Linux Virtual File System

n Individual file system implementations
conform to this architecture.

n May be linked to kernel or loaded as
modules

n Linux kernel 2.6 supports over 50 file
systems in official version
l E.g., minix, ext, ext2, ext3, iso9660, msdos, nfs,

smb, …

