1 | /** |
---|
2 | * Program: DemoWordCondProb.java |
---|
3 | * Editor: Waue Chen |
---|
4 | * From : NCHC. Taiwn |
---|
5 | * Last Update Date: 07/02/2008 |
---|
6 | * Re-code from : Cloud9: A MapReduce Library for Hadoop |
---|
7 | */ |
---|
8 | /* |
---|
9 | * Cloud9: A MapReduce Library for Hadoop |
---|
10 | */ |
---|
11 | |
---|
12 | package tw.org.nchc.demo; |
---|
13 | |
---|
14 | import java.io.IOException; |
---|
15 | import java.rmi.UnexpectedException; |
---|
16 | import java.util.HashMap; |
---|
17 | import java.util.Iterator; |
---|
18 | import java.util.StringTokenizer; |
---|
19 | |
---|
20 | import org.apache.hadoop.fs.Path; |
---|
21 | import org.apache.hadoop.io.FloatWritable; |
---|
22 | import org.apache.hadoop.io.LongWritable; |
---|
23 | import org.apache.hadoop.mapred.JobClient; |
---|
24 | import org.apache.hadoop.mapred.JobConf; |
---|
25 | import org.apache.hadoop.mapred.MapReduceBase; |
---|
26 | import org.apache.hadoop.mapred.Mapper; |
---|
27 | import org.apache.hadoop.mapred.OutputCollector; |
---|
28 | import org.apache.hadoop.mapred.Partitioner; |
---|
29 | import org.apache.hadoop.mapred.Reducer; |
---|
30 | import org.apache.hadoop.mapred.Reporter; |
---|
31 | import org.apache.hadoop.mapred.SequenceFileInputFormat; |
---|
32 | import org.apache.hadoop.mapred.TextOutputFormat; |
---|
33 | import org.apache.hadoop.mapred.lib.IdentityReducer; |
---|
34 | |
---|
35 | import tw.org.nchc.tuple.Schema; |
---|
36 | import tw.org.nchc.tuple.Tuple; |
---|
37 | |
---|
38 | /** |
---|
39 | * <p> |
---|
40 | * Demo that illustrates the use of a Partitioner and special symbols in Tuple |
---|
41 | * to compute conditional probabilities. Demo builds on |
---|
42 | * {@link DemoWordCountTuple}, and has similar structure. Input comes from |
---|
43 | * Bible+Shakespeare sample collection, encoded as single-field tuples; see |
---|
44 | * {@link DemoPackRecords}. Sample of final output: |
---|
45 | * |
---|
46 | * <pre> |
---|
47 | * ... |
---|
48 | * (admirable, *) 15.0 |
---|
49 | * (admirable, 0) 0.6 |
---|
50 | * (admirable, 1) 0.4 |
---|
51 | * (admiral, *) 6.0 |
---|
52 | * (admiral, 0) 0.33333334 |
---|
53 | * (admiral, 1) 0.6666667 |
---|
54 | * (admiration, *) 16.0 |
---|
55 | * (admiration, 0) 0.625 |
---|
56 | * (admiration, 1) 0.375 |
---|
57 | * (admire, *) 8.0 |
---|
58 | * (admire, 0) 0.625 |
---|
59 | * (admire, 1) 0.375 |
---|
60 | * (admired, *) 19.0 |
---|
61 | * (admired, 0) 0.6315789 |
---|
62 | * (admired, 1) 0.36842105 |
---|
63 | * ... |
---|
64 | * </pre> |
---|
65 | * |
---|
66 | * <p> |
---|
67 | * The first field of the key tuple contains a token. If the second field |
---|
68 | * contains the special symbol '*', then the value indicates the count of the |
---|
69 | * token in the collection. Otherwise, the value indicates p(EvenOrOdd|Token), |
---|
70 | * the probability that a line is odd-length or even-length, given the |
---|
71 | * occurrence of a token. |
---|
72 | * </p> |
---|
73 | */ |
---|
74 | public class DemoWordCondProb { |
---|
75 | |
---|
76 | // create the schema for the tuple that will serve as the key |
---|
77 | private static final Schema KEY_SCHEMA = new Schema(); |
---|
78 | |
---|
79 | // define the schema statically |
---|
80 | static { |
---|
81 | KEY_SCHEMA.addField("Token", String.class, ""); |
---|
82 | KEY_SCHEMA.addField("EvenOrOdd", Integer.class, new Integer(1)); |
---|
83 | } |
---|
84 | |
---|
85 | // mapper that emits tuple as the key, and value '1' for each occurrence |
---|
86 | private static class MapClass extends MapReduceBase implements |
---|
87 | Mapper<LongWritable, Tuple, Tuple, FloatWritable> { |
---|
88 | private final static FloatWritable one = new FloatWritable(1); |
---|
89 | private Tuple tupleOut = KEY_SCHEMA.instantiate(); |
---|
90 | |
---|
91 | public void map(LongWritable key, Tuple tupleIn, |
---|
92 | OutputCollector<Tuple, FloatWritable> output, Reporter reporter) |
---|
93 | throws IOException { |
---|
94 | |
---|
95 | // the input value is a tuple; get field 0 |
---|
96 | // see DemoPackRecords of how input SequenceFile is generated |
---|
97 | String line = (String) ((Tuple) tupleIn).get(0); |
---|
98 | StringTokenizer itr = new StringTokenizer(line); |
---|
99 | while (itr.hasMoreTokens()) { |
---|
100 | String token = itr.nextToken(); |
---|
101 | |
---|
102 | // emit key-value pair for either even-length or odd-length line |
---|
103 | tupleOut.set("Token", token); |
---|
104 | tupleOut.set("EvenOrOdd", line.length() % 2); |
---|
105 | output.collect(tupleOut, one); |
---|
106 | |
---|
107 | // emit key-value pair for the total count |
---|
108 | tupleOut.set("Token", token); |
---|
109 | // use special symbol in field 2 |
---|
110 | tupleOut.setSymbol("EvenOrOdd", "*"); |
---|
111 | output.collect(tupleOut, one); |
---|
112 | } |
---|
113 | } |
---|
114 | } |
---|
115 | |
---|
116 | // reducer computes conditional probabilities |
---|
117 | private static class ReduceClass extends MapReduceBase implements |
---|
118 | Reducer<Tuple, FloatWritable, Tuple, FloatWritable> { |
---|
119 | // HashMap keeps track of total counts |
---|
120 | private final static HashMap<String, Integer> TotalCounts = new HashMap<String, Integer>(); |
---|
121 | |
---|
122 | public synchronized void reduce(Tuple tupleKey, |
---|
123 | Iterator<FloatWritable> values, |
---|
124 | OutputCollector<Tuple, FloatWritable> output, Reporter reporter) |
---|
125 | throws IOException { |
---|
126 | // sum values |
---|
127 | int sum = 0; |
---|
128 | while (values.hasNext()) { |
---|
129 | sum += values.next().get(); |
---|
130 | } |
---|
131 | |
---|
132 | String tok = (String) tupleKey.get("Token"); |
---|
133 | |
---|
134 | // check if the second field is a special symbol |
---|
135 | if (tupleKey.containsSymbol("EvenOrOdd")) { |
---|
136 | // emit total count |
---|
137 | output.collect(tupleKey, new FloatWritable(sum)); |
---|
138 | // record total count |
---|
139 | TotalCounts.put(tok, sum); |
---|
140 | } else { |
---|
141 | if (!TotalCounts.containsKey(tok)) |
---|
142 | throw new UnexpectedException("Don't have total counts!"); |
---|
143 | |
---|
144 | // divide sum by total count to obtain conditional probability |
---|
145 | float p = (float) sum / TotalCounts.get(tok); |
---|
146 | |
---|
147 | // emit P(EvenOrOdd|Token) |
---|
148 | output.collect(tupleKey, new FloatWritable(p)); |
---|
149 | } |
---|
150 | } |
---|
151 | } |
---|
152 | |
---|
153 | // partition by first field of the tuple, so that tuples corresponding |
---|
154 | // to the same token will be sent to the same reducer |
---|
155 | private static class MyPartitioner implements |
---|
156 | Partitioner<Tuple, FloatWritable> { |
---|
157 | public void configure(JobConf job) { |
---|
158 | } |
---|
159 | |
---|
160 | public int getPartition(Tuple key, FloatWritable value, |
---|
161 | int numReduceTasks) { |
---|
162 | return (key.get("Token").hashCode() & Integer.MAX_VALUE) |
---|
163 | % numReduceTasks; |
---|
164 | } |
---|
165 | } |
---|
166 | |
---|
167 | // dummy constructor |
---|
168 | private DemoWordCondProb() { |
---|
169 | } |
---|
170 | |
---|
171 | /** |
---|
172 | * Runs the demo. |
---|
173 | */ |
---|
174 | public static void main(String[] args) throws IOException { |
---|
175 | String inPath = "/shared/sample-input/bible+shakes.nopunc.packed"; |
---|
176 | String output1Path = "condprob"; |
---|
177 | int numMapTasks = 20; |
---|
178 | int numReduceTasks = 10; |
---|
179 | |
---|
180 | // first MapReduce cycle is to do the tuple counting |
---|
181 | JobConf conf1 = new JobConf(DemoWordCondProb.class); |
---|
182 | conf1.setJobName("DemoWordCondProb.MR1"); |
---|
183 | |
---|
184 | conf1.setNumMapTasks(numMapTasks); |
---|
185 | conf1.setNumReduceTasks(numReduceTasks); |
---|
186 | conf1.setInputPath(new Path(inPath)); |
---|
187 | |
---|
188 | conf1.setInputFormat(SequenceFileInputFormat.class); |
---|
189 | |
---|
190 | conf1.setOutputPath(new Path(output1Path)); |
---|
191 | conf1.setOutputKeyClass(Tuple.class); |
---|
192 | conf1.setOutputValueClass(FloatWritable.class); |
---|
193 | conf1.setOutputFormat(TextOutputFormat.class); |
---|
194 | |
---|
195 | conf1.setMapperClass(MapClass.class); |
---|
196 | // this is a potential gotcha! can't use ReduceClass for combine because |
---|
197 | // we have not collected all the counts yet, so we can't divide through |
---|
198 | // to compute the conditional probabilities |
---|
199 | conf1.setCombinerClass(IdentityReducer.class); |
---|
200 | conf1.setReducerClass(ReduceClass.class); |
---|
201 | conf1.setPartitionerClass(MyPartitioner.class); |
---|
202 | |
---|
203 | JobClient.runJob(conf1); |
---|
204 | } |
---|
205 | } |
---|