1 | /** |
---|
2 | * Program: WordCountFromHBase.java |
---|
3 | * Editor: Waue Chen |
---|
4 | * From : NCHC. Taiwn |
---|
5 | * Last Update Date: 06/13/2008 |
---|
6 | */ |
---|
7 | |
---|
8 | /** |
---|
9 | * Purpose : |
---|
10 | * Word counting from Hbase then store result in Hadoop file system |
---|
11 | * |
---|
12 | * HowToUse : |
---|
13 | * Make sure Hadoop file system are running and HBase has correct data. |
---|
14 | * Suggest to run WordCountIntoHBase first. |
---|
15 | * finally, modify these setup parameters and run. |
---|
16 | * |
---|
17 | * Check Result: |
---|
18 | * |
---|
19 | * inspect http://localhost:50070 by web explorer |
---|
20 | */ |
---|
21 | |
---|
22 | package tw.org.nchc.code; |
---|
23 | |
---|
24 | import java.io.IOException; |
---|
25 | import java.util.Iterator; |
---|
26 | import java.util.StringTokenizer; |
---|
27 | import java.io.FileOutputStream; |
---|
28 | import java.io.File; |
---|
29 | import java.io.RandomAccessFile; |
---|
30 | import org.apache.hadoop.fs.FileSystem; |
---|
31 | import org.apache.hadoop.fs.Path; |
---|
32 | import org.apache.hadoop.hbase.HStoreKey; |
---|
33 | import org.apache.hadoop.hbase.io.ImmutableBytesWritable; |
---|
34 | import org.apache.hadoop.hbase.mapred.TableInputFormat; |
---|
35 | import org.apache.hadoop.hbase.mapred.TableMap; |
---|
36 | import org.apache.hadoop.io.IntWritable; |
---|
37 | import org.apache.hadoop.io.MapWritable; |
---|
38 | import org.apache.hadoop.io.Text; |
---|
39 | import org.apache.hadoop.mapred.JobClient; |
---|
40 | import org.apache.hadoop.mapred.JobConf; |
---|
41 | import org.apache.hadoop.mapred.MapReduceBase; |
---|
42 | import org.apache.hadoop.mapred.OutputCollector; |
---|
43 | import org.apache.hadoop.mapred.Reducer; |
---|
44 | import org.apache.hadoop.mapred.Reporter; |
---|
45 | @SuppressWarnings("unused") |
---|
46 | |
---|
47 | public class WordCountFromHBase { |
---|
48 | /* setup parameters */ |
---|
49 | // set the output path |
---|
50 | static String outputPath = "counts2"; |
---|
51 | |
---|
52 | // org.apache.hadoop.hbase.mapred.TableMap<K,V> \ |
---|
53 | // TableMap<K extends org.apache.hadoop.io.WritableComparable, \ |
---|
54 | // V extends org.apache.hadoop.io.Writable> \ |
---|
55 | // Scan an HBase table to sort by a specified sort column. \ |
---|
56 | // If the column does not exist, the record is not passed to Reduce.; |
---|
57 | private static class MapClass extends TableMap<Text, IntWritable> { |
---|
58 | |
---|
59 | // set one as (IntWritable)1 |
---|
60 | private final static IntWritable one = new IntWritable(1); |
---|
61 | // set column |
---|
62 | private final static Text textcol = new Text(WordCountIntoHBase.colstr); |
---|
63 | private Text word = new Text(); |
---|
64 | // TableMap is a interface, map is a abstract method. now, we should \ |
---|
65 | // inprement map() at here, format is : \ |
---|
66 | // map(HStoreKey key, MapWritable value, \ |
---|
67 | // OutputCollector<K,V> output, Reporter reporter) ; |
---|
68 | // Call a user defined function on a single HBase record, \ |
---|
69 | // represented by a key and its associated record value. ; |
---|
70 | public void map(HStoreKey key, MapWritable cols, |
---|
71 | OutputCollector<Text, IntWritable> output, Reporter reporter) |
---|
72 | throws IOException { |
---|
73 | // |
---|
74 | // The first get() is : Writable <- get(Object key) \ |
---|
75 | // get in interface Map<Writable,Writable> ; |
---|
76 | // Use ImmutableBytesWritable to downcast Writable \ |
---|
77 | // The second get() is : byte[] <- get() \ |
---|
78 | // Get the data from the BytesWritable. ; |
---|
79 | // Text.decode is parse UTF-8 code to a String ; |
---|
80 | // per "line" is per row data in HTable |
---|
81 | String line = Text.decode( ((ImmutableBytesWritable) cols.get(textcol) ) |
---|
82 | .get() ); |
---|
83 | |
---|
84 | //let us know what is "line" |
---|
85 | /* |
---|
86 | RandomAccessFile raf = |
---|
87 | new RandomAccessFile("/home/waue/mr-result.txt","rw"); |
---|
88 | raf.seek(raf.length()); // move pointer to end |
---|
89 | raf.write(("\n"+line).getBytes()); |
---|
90 | raf.close(); |
---|
91 | *///end |
---|
92 | // the result is the contents of merged files " |
---|
93 | |
---|
94 | //StringTokenizer will divide a line into a word |
---|
95 | StringTokenizer itr = new StringTokenizer(line); |
---|
96 | // set every word as one |
---|
97 | while (itr.hasMoreTokens()) { |
---|
98 | // nextToken will return this value in String and point to next \ |
---|
99 | // Text.set() = Set to contain the contents of a string. |
---|
100 | word.set(itr.nextToken()); |
---|
101 | // OutputCollector.collect = collect(K key, V value) \ |
---|
102 | // Adds a key/value pair to the output. |
---|
103 | output.collect(word, one); |
---|
104 | } |
---|
105 | } |
---|
106 | } |
---|
107 | |
---|
108 | // reducer: sums up all the counts |
---|
109 | private static class ReduceClass extends MapReduceBase implements |
---|
110 | Reducer<Text, IntWritable, Text, IntWritable> { |
---|
111 | |
---|
112 | // reuse objects |
---|
113 | private final static IntWritable SumValue = new IntWritable(); |
---|
114 | |
---|
115 | // this sample's reduce() format is the same as map() \ |
---|
116 | // reduce is a method waiting for implement \ |
---|
117 | // four type in this sample is (Text , Iterator<IntWritable>, \ |
---|
118 | // OutputCollector<Text, IntWritable> , Reporter ) ; |
---|
119 | public void reduce(Text key, Iterator<IntWritable> values, |
---|
120 | OutputCollector<Text, IntWritable> output, Reporter reporter) |
---|
121 | throws IOException { |
---|
122 | // sum up value |
---|
123 | int sum = 0; |
---|
124 | // "key" is word , "value" is sum |
---|
125 | // why values.hasNext(), not key.hasNext() |
---|
126 | while (values.hasNext()) { |
---|
127 | // next() will return this value and pointer to next event \ |
---|
128 | // IntWritable.get() will transfer IntWritable to Int |
---|
129 | sum += values.next().get(); |
---|
130 | } |
---|
131 | // IntWritable.set(int) will transfer Int to IntWritable |
---|
132 | SumValue.set(sum); |
---|
133 | // hense we set outputPath in main, the output.collect will put |
---|
134 | // data in Hadoop |
---|
135 | output.collect(key, SumValue); |
---|
136 | } |
---|
137 | } |
---|
138 | |
---|
139 | private WordCountFromHBase() { |
---|
140 | } |
---|
141 | |
---|
142 | /** |
---|
143 | * Runs the demo. |
---|
144 | */ |
---|
145 | public static void main(String[] args) throws IOException { |
---|
146 | |
---|
147 | |
---|
148 | int mapTasks = 1; |
---|
149 | int reduceTasks = 1; |
---|
150 | // initialize job; |
---|
151 | JobConf conf = new JobConf(WordCountFromHBase.class); |
---|
152 | // TableMap.initJob will build HBase code \ |
---|
153 | // "org.apache.hadoop.hbase.mapred.TableMap".initJob \ |
---|
154 | // (Table_name,column_string,Which_class_will_use,job_configure); |
---|
155 | TableMap.initJob(WordCountIntoHBase.Table_Name, |
---|
156 | WordCountIntoHBase.colstr, MapClass.class, conf); |
---|
157 | conf.setJobName(WordCountIntoHBase.Table_Name + "store"); |
---|
158 | conf.setNumMapTasks(mapTasks); |
---|
159 | conf.setNumReduceTasks(reduceTasks); |
---|
160 | |
---|
161 | //Set the key class for the job output data. |
---|
162 | conf.setOutputKeyClass(Text.class); |
---|
163 | //Set the value class for job outputs. |
---|
164 | conf.setOutputValueClass(IntWritable.class); |
---|
165 | // MapperClass,CombinerClass,ReducerClass are essential |
---|
166 | conf.setMapperClass(MapClass.class); |
---|
167 | conf.setCombinerClass(ReduceClass.class); |
---|
168 | conf.setReducerClass(ReduceClass.class); |
---|
169 | // input is Hbase format => TableInputFormat |
---|
170 | conf.setInputFormat(TableInputFormat.class); |
---|
171 | conf.setOutputPath(new Path(outputPath)); |
---|
172 | // delete the old path with the same name |
---|
173 | FileSystem.get(conf).delete(new Path(outputPath)); |
---|
174 | JobClient.runJob(conf); |
---|
175 | } |
---|
176 | } |
---|